Development and external validation of a machine learning-based model to predict postoperative recurrence in patients with duodenal adenocarcinoma: a multicenter, retrospective cohort study.

IF 7 1区 医学 Q1 MEDICINE, GENERAL & INTERNAL BMC Medicine Pub Date : 2025-02-21 DOI:10.1186/s12916-025-03912-7
Xu Liu, Qifeng Xiao, Zongting Gu, Xin Wu, Chunhui Yuan, Xiaolong Tang, Fanbin Meng, Dong Wang, Ren Lang, Kaiqing Guo, Xiaodong Tian, Yu Zhang, Enhong Zhao, Zhenzhou Wu, Jingyong Xu, Ying Xing, Feng Cao, Chengfeng Wang, Jianwei Zhang
{"title":"Development and external validation of a machine learning-based model to predict postoperative recurrence in patients with duodenal adenocarcinoma: a multicenter, retrospective cohort study.","authors":"Xu Liu, Qifeng Xiao, Zongting Gu, Xin Wu, Chunhui Yuan, Xiaolong Tang, Fanbin Meng, Dong Wang, Ren Lang, Kaiqing Guo, Xiaodong Tian, Yu Zhang, Enhong Zhao, Zhenzhou Wu, Jingyong Xu, Ying Xing, Feng Cao, Chengfeng Wang, Jianwei Zhang","doi":"10.1186/s12916-025-03912-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Duodenal adenocarcinoma (DA) has a high recurrence rate, making the prediction of recurrence after surgery critically important.</p><p><strong>Methods: </strong>Our objective is to develop a machine learning-based model to predict the postoperative recurrence of DA. We conducted a multicenter, retrospective cohort study in China. 1830 patients with DA who underwent radical surgery between 2012 and 2023 were included. Wrapper methods were used to select optimal predictors by ten machine learning learners. Subsequently, these ten learners were utilized for model development. The model's performance was validated using three separate cohorts, and assessed by the concordance index (C-index), time-dependent calibration curve, time-dependent receiver operating characteristic curves, and decision curve analysis.</p><p><strong>Results: </strong>After selecting predictors, ten feature subsets were identified. And ten feature subsets were combined with the ten machine learning learners in a permutation, resulting in the development of 100 predictive models, and the Penalized Regression + Accelerated Oblique Random Survival Forest model (PAM) exhibited the best predictive performance. The C-index for PAM was 0.882 (95% CI 0.860-0.886) in the training cohort, 0.747 (95% CI 0.683-0.798) in the validation cohort 1, 0.736 (95% CI 0.649-0.792) in the validation cohort 2, and 0.734 (95% CI 0.674-0.791) in the validation cohort 3. A publicly accessible web tool was developed for the PAM.</p><p><strong>Conclusions: </strong>The PAM has the potential to identify postoperative recurrence in DA patients. This can assist clinicians in assessing the severity of the disease, facilitating patient follow-up, and aiding in the formulation of adjuvant treatment strategies.</p>","PeriodicalId":9188,"journal":{"name":"BMC Medicine","volume":"23 1","pages":"98"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846245/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12916-025-03912-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Duodenal adenocarcinoma (DA) has a high recurrence rate, making the prediction of recurrence after surgery critically important.

Methods: Our objective is to develop a machine learning-based model to predict the postoperative recurrence of DA. We conducted a multicenter, retrospective cohort study in China. 1830 patients with DA who underwent radical surgery between 2012 and 2023 were included. Wrapper methods were used to select optimal predictors by ten machine learning learners. Subsequently, these ten learners were utilized for model development. The model's performance was validated using three separate cohorts, and assessed by the concordance index (C-index), time-dependent calibration curve, time-dependent receiver operating characteristic curves, and decision curve analysis.

Results: After selecting predictors, ten feature subsets were identified. And ten feature subsets were combined with the ten machine learning learners in a permutation, resulting in the development of 100 predictive models, and the Penalized Regression + Accelerated Oblique Random Survival Forest model (PAM) exhibited the best predictive performance. The C-index for PAM was 0.882 (95% CI 0.860-0.886) in the training cohort, 0.747 (95% CI 0.683-0.798) in the validation cohort 1, 0.736 (95% CI 0.649-0.792) in the validation cohort 2, and 0.734 (95% CI 0.674-0.791) in the validation cohort 3. A publicly accessible web tool was developed for the PAM.

Conclusions: The PAM has the potential to identify postoperative recurrence in DA patients. This can assist clinicians in assessing the severity of the disease, facilitating patient follow-up, and aiding in the formulation of adjuvant treatment strategies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Medicine
BMC Medicine 医学-医学:内科
CiteScore
13.10
自引率
1.10%
发文量
435
审稿时长
4-8 weeks
期刊介绍: BMC Medicine is an open access, transparent peer-reviewed general medical journal. It is the flagship journal of the BMC series and publishes outstanding and influential research in various areas including clinical practice, translational medicine, medical and health advances, public health, global health, policy, and general topics of interest to the biomedical and sociomedical professional communities. In addition to research articles, the journal also publishes stimulating debates, reviews, unique forum articles, and concise tutorials. All articles published in BMC Medicine are included in various databases such as Biological Abstracts, BIOSIS, CAS, Citebase, Current contents, DOAJ, Embase, MEDLINE, PubMed, Science Citation Index Expanded, OAIster, SCImago, Scopus, SOCOLAR, and Zetoc.
期刊最新文献
Antidepressant use and cognitive decline in patients with dementia: a national cohort study. Relationship of tobacco smoking to cause-specific mortality: contemporary estimates from Australia. Development and validation of the systemic nutrition/inflammation index for improving perioperative management of non-small cell lung cancer. Guidelines for the use of lung ultrasound to optimise the management of neonatal respiratory distress: international expert consensus. Long-term outcomes in patients with acute coronary syndrome undergoing percutaneous coronary intervention without standard modifiable cardiovascular risk factors: findings from the OPT-CAD cohort.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1