The catalytic tetrad of Aedes aegypti Argonaute 2 is critical for the antiviral activity of the exogenous siRNA pathway.

IF 4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Biological Chemistry Pub Date : 2025-02-19 DOI:10.1016/j.jbc.2025.108332
Krittika Dummunee, Rhys H Parry, Lars Redecke, Margus Varjak, Benjamin Brennan, Alain Kohl, Melanie McFarlane
{"title":"The catalytic tetrad of Aedes aegypti Argonaute 2 is critical for the antiviral activity of the exogenous siRNA pathway.","authors":"Krittika Dummunee, Rhys H Parry, Lars Redecke, Margus Varjak, Benjamin Brennan, Alain Kohl, Melanie McFarlane","doi":"10.1016/j.jbc.2025.108332","DOIUrl":null,"url":null,"abstract":"<p><p>Viruses transmitted by biting arthropods, arboviruses, pose a significant global health and economic threat. Climate change is exacerbating this issue by expanding the range of disease-carrying vectors. Effective control of arbovirus transmission often relies on targeting the vectors, making it crucial to understand the interactions between the virus and its vector. The exogenous siRNA (exo-siRNA) pathway is a key antiviral defence mechanism in mosquitoes such as Aedes aegypti. Argonaute 2 (Ago2) is a central protein in this pathway, responsible for antiviral activity. While the PIWI domain of Ago proteins is known to mediate slicing activity, not all Ago proteins possess this slicing function. To understand the antiviral mechanism of Ago2 in Ae. aegypti, we aimed to confirm the presence of the catalytic tetrad, a group of amino acids known to be crucial for slicing activity. Here, we confirmed the tetrad (D740, E780, D812, and H950) in Ae. aegypti Ago2 and demonstrated its essential role in antiviral and siRNA pathway activity. Our findings show that the catalytic tetrad is necessary for the degradation of siRNA passenger strands. When the tetrad is absent, siRNA duplexes accumulate, leading to a loss of siRNA pathway function. This underscores the critical role of the tetrad in the antiviral defence mechanism of Ae. aegypti.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108332"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.108332","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Viruses transmitted by biting arthropods, arboviruses, pose a significant global health and economic threat. Climate change is exacerbating this issue by expanding the range of disease-carrying vectors. Effective control of arbovirus transmission often relies on targeting the vectors, making it crucial to understand the interactions between the virus and its vector. The exogenous siRNA (exo-siRNA) pathway is a key antiviral defence mechanism in mosquitoes such as Aedes aegypti. Argonaute 2 (Ago2) is a central protein in this pathway, responsible for antiviral activity. While the PIWI domain of Ago proteins is known to mediate slicing activity, not all Ago proteins possess this slicing function. To understand the antiviral mechanism of Ago2 in Ae. aegypti, we aimed to confirm the presence of the catalytic tetrad, a group of amino acids known to be crucial for slicing activity. Here, we confirmed the tetrad (D740, E780, D812, and H950) in Ae. aegypti Ago2 and demonstrated its essential role in antiviral and siRNA pathway activity. Our findings show that the catalytic tetrad is necessary for the degradation of siRNA passenger strands. When the tetrad is absent, siRNA duplexes accumulate, leading to a loss of siRNA pathway function. This underscores the critical role of the tetrad in the antiviral defence mechanism of Ae. aegypti.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biological Chemistry
Journal of Biological Chemistry Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
4.20%
发文量
1233
期刊介绍: The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.
期刊最新文献
Double Prenylation of Budding Yeast Ykt6 Regulates Cell Wall Integrity and Autophagy. Proximal cysteine residues in proteins promote Nε-carboxyalkylation of lysine residues by α-dicarbonyl compounds. Structure-function studies of a nucleoplasmin isoform from Plasmodium falciparum. Substrate recognition in Bacillus anthracis sortase B beyond its canonical pentapeptide binding motif and use in sortase-mediated ligation. The ROGDI protein mutated in Kohlschutter-Tonz syndrome is a novel subunit of the Rabconnectin-3 complex implicated in V-ATPase assembly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1