Minjie Wang , Yuan Zhang , Aiping Wang , Zhongxue Gan , Lihua Zhang , Xiaoyang Kang
{"title":"Soft neural interface with color adjusted PDMS encapsulation layer for spinal cord stimulation","authors":"Minjie Wang , Yuan Zhang , Aiping Wang , Zhongxue Gan , Lihua Zhang , Xiaoyang Kang","doi":"10.1016/j.jneumeth.2025.110402","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Spinal cord stimulation (SCS) plays a crucial role in treating various neurological diseases. Utilizing soft spinal cord electrodes in SCS allows for a better fit with the physiological structure of the spinal cord and reduces tissue damage. Polydimethylsiloxane (PDMS) has emerged as an ideal material for soft bioelectronics. However, micromachining soft PDMS bioelectronics devices with low thermal effects and high uniformity remains challenging.</div></div><div><h3>New method</h3><div>Here, we demonstrated a fully laser-micromachined soft neural interface for SCS. The native and color adjusted PDMS with variable absorbance characteristics were investigated in laser processing. In addition, we systematically evaluated the impact of electrode sizes on the electrochemical performance of neural interface. By fitting the equivalent circuit model, the electrochemical process of neural interface was revealed and the performance of the electrode was evaluated. The biocompatibility of color adjusted PDMS was confirmed by cytotoxicity assays. Finally, we validated the neural interface in mice.</div></div><div><h3>Results</h3><div>Color adjusted PDMS has good biocompatibility and can significantly reduce the damage caused by thermal effects, enhancing the electrochemical performance of bioelectronic devices. The soft neural interface with color adjusted PDMS encapsulation layer can activate the motor function safely.</div></div><div><h3>Comparison with existing methods</h3><div>The fully laser-micromachined soft neural interface was proposed for the first time. Compared with existing methods, this method showed low thermal effects, high uniformity, and could be easily scaled up.</div></div><div><h3>Conclusions</h3><div>The fully laser-micromachined soft neural interface device with color adjusted PDMS encapsulation layer shows great promise for applications in SCS.</div></div>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":"417 ","pages":"Article 110402"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165027025000433","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Spinal cord stimulation (SCS) plays a crucial role in treating various neurological diseases. Utilizing soft spinal cord electrodes in SCS allows for a better fit with the physiological structure of the spinal cord and reduces tissue damage. Polydimethylsiloxane (PDMS) has emerged as an ideal material for soft bioelectronics. However, micromachining soft PDMS bioelectronics devices with low thermal effects and high uniformity remains challenging.
New method
Here, we demonstrated a fully laser-micromachined soft neural interface for SCS. The native and color adjusted PDMS with variable absorbance characteristics were investigated in laser processing. In addition, we systematically evaluated the impact of electrode sizes on the electrochemical performance of neural interface. By fitting the equivalent circuit model, the electrochemical process of neural interface was revealed and the performance of the electrode was evaluated. The biocompatibility of color adjusted PDMS was confirmed by cytotoxicity assays. Finally, we validated the neural interface in mice.
Results
Color adjusted PDMS has good biocompatibility and can significantly reduce the damage caused by thermal effects, enhancing the electrochemical performance of bioelectronic devices. The soft neural interface with color adjusted PDMS encapsulation layer can activate the motor function safely.
Comparison with existing methods
The fully laser-micromachined soft neural interface was proposed for the first time. Compared with existing methods, this method showed low thermal effects, high uniformity, and could be easily scaled up.
Conclusions
The fully laser-micromachined soft neural interface device with color adjusted PDMS encapsulation layer shows great promise for applications in SCS.
期刊介绍:
The Journal of Neuroscience Methods publishes papers that describe new methods that are specifically for neuroscience research conducted in invertebrates, vertebrates or in man. Major methodological improvements or important refinements of established neuroscience methods are also considered for publication. The Journal''s Scope includes all aspects of contemporary neuroscience research, including anatomical, behavioural, biochemical, cellular, computational, molecular, invasive and non-invasive imaging, optogenetic, and physiological research investigations.