Soft neural interface with color adjusted PDMS encapsulation layer for spinal cord stimulation

IF 2.7 4区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of Neuroscience Methods Pub Date : 2025-02-19 DOI:10.1016/j.jneumeth.2025.110402
Minjie Wang , Yuan Zhang , Aiping Wang , Zhongxue Gan , Lihua Zhang , Xiaoyang Kang
{"title":"Soft neural interface with color adjusted PDMS encapsulation layer for spinal cord stimulation","authors":"Minjie Wang ,&nbsp;Yuan Zhang ,&nbsp;Aiping Wang ,&nbsp;Zhongxue Gan ,&nbsp;Lihua Zhang ,&nbsp;Xiaoyang Kang","doi":"10.1016/j.jneumeth.2025.110402","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Spinal cord stimulation (SCS) plays a crucial role in treating various neurological diseases. Utilizing soft spinal cord electrodes in SCS allows for a better fit with the physiological structure of the spinal cord and reduces tissue damage. Polydimethylsiloxane (PDMS) has emerged as an ideal material for soft bioelectronics. However, micromachining soft PDMS bioelectronics devices with low thermal effects and high uniformity remains challenging.</div></div><div><h3>New method</h3><div>Here, we demonstrated a fully laser-micromachined soft neural interface for SCS. The native and color adjusted PDMS with variable absorbance characteristics were investigated in laser processing. In addition, we systematically evaluated the impact of electrode sizes on the electrochemical performance of neural interface. By fitting the equivalent circuit model, the electrochemical process of neural interface was revealed and the performance of the electrode was evaluated. The biocompatibility of color adjusted PDMS was confirmed by cytotoxicity assays. Finally, we validated the neural interface in mice.</div></div><div><h3>Results</h3><div>Color adjusted PDMS has good biocompatibility and can significantly reduce the damage caused by thermal effects, enhancing the electrochemical performance of bioelectronic devices. The soft neural interface with color adjusted PDMS encapsulation layer can activate the motor function safely.</div></div><div><h3>Comparison with existing methods</h3><div>The fully laser-micromachined soft neural interface was proposed for the first time. Compared with existing methods, this method showed low thermal effects, high uniformity, and could be easily scaled up.</div></div><div><h3>Conclusions</h3><div>The fully laser-micromachined soft neural interface device with color adjusted PDMS encapsulation layer shows great promise for applications in SCS.</div></div>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":"417 ","pages":"Article 110402"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165027025000433","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Spinal cord stimulation (SCS) plays a crucial role in treating various neurological diseases. Utilizing soft spinal cord electrodes in SCS allows for a better fit with the physiological structure of the spinal cord and reduces tissue damage. Polydimethylsiloxane (PDMS) has emerged as an ideal material for soft bioelectronics. However, micromachining soft PDMS bioelectronics devices with low thermal effects and high uniformity remains challenging.

New method

Here, we demonstrated a fully laser-micromachined soft neural interface for SCS. The native and color adjusted PDMS with variable absorbance characteristics were investigated in laser processing. In addition, we systematically evaluated the impact of electrode sizes on the electrochemical performance of neural interface. By fitting the equivalent circuit model, the electrochemical process of neural interface was revealed and the performance of the electrode was evaluated. The biocompatibility of color adjusted PDMS was confirmed by cytotoxicity assays. Finally, we validated the neural interface in mice.

Results

Color adjusted PDMS has good biocompatibility and can significantly reduce the damage caused by thermal effects, enhancing the electrochemical performance of bioelectronic devices. The soft neural interface with color adjusted PDMS encapsulation layer can activate the motor function safely.

Comparison with existing methods

The fully laser-micromachined soft neural interface was proposed for the first time. Compared with existing methods, this method showed low thermal effects, high uniformity, and could be easily scaled up.

Conclusions

The fully laser-micromachined soft neural interface device with color adjusted PDMS encapsulation layer shows great promise for applications in SCS.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于脊髓刺激的带颜色调节 PDMS 封装层的软神经接口。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Neuroscience Methods
Journal of Neuroscience Methods 医学-神经科学
CiteScore
7.10
自引率
3.30%
发文量
226
审稿时长
52 days
期刊介绍: The Journal of Neuroscience Methods publishes papers that describe new methods that are specifically for neuroscience research conducted in invertebrates, vertebrates or in man. Major methodological improvements or important refinements of established neuroscience methods are also considered for publication. The Journal''s Scope includes all aspects of contemporary neuroscience research, including anatomical, behavioural, biochemical, cellular, computational, molecular, invasive and non-invasive imaging, optogenetic, and physiological research investigations.
期刊最新文献
Editorial Board Establishing the electrical physiological feasibility of the rabbit median nerve as an experimental model for carpal tunnel syndrome. Enhancing therapeutic efficacy of Fingolimod via Intranasal Delivery in an Ethidium Bromide-induced Model of Multiple Sclerosis. Multi-view graph fusion of self-weighted EEG feature representations for speech imagery decoding. Direction of TIS envelope electric field: Perpendicular to the longitudinal axis of the hippocampus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1