Construction of hot tumor classification models in gastrointestinal cancers.

IF 6.1 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Journal of Translational Medicine Pub Date : 2025-02-21 DOI:10.1186/s12967-025-06230-x
Chien-Jung Huang, Guan-Ting Liu, Yi-Chen Yeh, Shin-Yi Chung, Yu-Chan Chang, Nai-Jung Chiang, Meng-Lun Lu, Wei-Ning Huang, Ming-Huang Chen, Yu-Chao Wang
{"title":"Construction of hot tumor classification models in gastrointestinal cancers.","authors":"Chien-Jung Huang, Guan-Ting Liu, Yi-Chen Yeh, Shin-Yi Chung, Yu-Chan Chang, Nai-Jung Chiang, Meng-Lun Lu, Wei-Ning Huang, Ming-Huang Chen, Yu-Chao Wang","doi":"10.1186/s12967-025-06230-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Gastrointestinal (GI) cancers account for more than one-third of cancer-related mortality, and the prognosis for late-stage patients remains poor. Immunotherapy has been proven to extend the survival of patients at advanced stages; however, challenges persist in patient selection and overcoming drug resistance. Tumor-infiltrating lymphocytes (TILs) and tertiary lymphoid structures (TLS) in the tumor microenvironment (TME) have been found to be associated with anti-tumor immune responses. 'Hot tumors' with high levels of infiltration tend to respond better to immune checkpoint inhibitor (ICI) therapy, making them potential biomarkers for ICI treatment.</p><p><strong>Methods: </strong>To explore potential biomarkers for predicting immunotherapy response and prognosis in GI cancers, we downloaded the gene expression profiles of seven GI cancers from The Cancer Genome Atlas (TCGA) database and characterized their TME, classifying the samples into hot/cold tumor subgroups. Furthermore, we developed a computational framework to construct cancer-specific hot tumor classification models with only a few genes. External independent datasets and qPCR experiments were used to verify the performance of our few-gene models.</p><p><strong>Results: </strong>We constructed cancer-specific few-gene models to identify hot tumors for GI cancers with only two to nine genes. The results showed that B cells are important for hot tumor determination, and the identified hot tumors are significantly associated with TLS. They not only overexpress TLS marker genes but are also associated with the presence of TLS in whole-slide images. Further, a two-gene qPCR model was developed to effectively distinguish between hot and cold tumor subgroups in cholangiocarcinoma, providing an opportunity for stratifying patients with hot tumors in clinical settings.</p><p><strong>Conclusions: </strong>In conclusion, our established few-gene models, which can be easily integrated into clinical practice, can distinguish hot and cold tumor subgroups, and may serve as potential biomarkers for predicting ICI response.</p>","PeriodicalId":17458,"journal":{"name":"Journal of Translational Medicine","volume":"23 1","pages":"218"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846462/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12967-025-06230-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Gastrointestinal (GI) cancers account for more than one-third of cancer-related mortality, and the prognosis for late-stage patients remains poor. Immunotherapy has been proven to extend the survival of patients at advanced stages; however, challenges persist in patient selection and overcoming drug resistance. Tumor-infiltrating lymphocytes (TILs) and tertiary lymphoid structures (TLS) in the tumor microenvironment (TME) have been found to be associated with anti-tumor immune responses. 'Hot tumors' with high levels of infiltration tend to respond better to immune checkpoint inhibitor (ICI) therapy, making them potential biomarkers for ICI treatment.

Methods: To explore potential biomarkers for predicting immunotherapy response and prognosis in GI cancers, we downloaded the gene expression profiles of seven GI cancers from The Cancer Genome Atlas (TCGA) database and characterized their TME, classifying the samples into hot/cold tumor subgroups. Furthermore, we developed a computational framework to construct cancer-specific hot tumor classification models with only a few genes. External independent datasets and qPCR experiments were used to verify the performance of our few-gene models.

Results: We constructed cancer-specific few-gene models to identify hot tumors for GI cancers with only two to nine genes. The results showed that B cells are important for hot tumor determination, and the identified hot tumors are significantly associated with TLS. They not only overexpress TLS marker genes but are also associated with the presence of TLS in whole-slide images. Further, a two-gene qPCR model was developed to effectively distinguish between hot and cold tumor subgroups in cholangiocarcinoma, providing an opportunity for stratifying patients with hot tumors in clinical settings.

Conclusions: In conclusion, our established few-gene models, which can be easily integrated into clinical practice, can distinguish hot and cold tumor subgroups, and may serve as potential biomarkers for predicting ICI response.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Translational Medicine
Journal of Translational Medicine 医学-医学:研究与实验
CiteScore
10.00
自引率
1.40%
发文量
537
审稿时长
1 months
期刊介绍: The Journal of Translational Medicine is an open-access journal that publishes articles focusing on information derived from human experimentation to enhance communication between basic and clinical science. It covers all areas of translational medicine.
期刊最新文献
Cancer ATF4-mediated CD58 endocytosis impairs anti-tumor immunity and immunotherapy. Causal relationship between osteoporosis, bone mineral density, and osteonecrosis: a bidirectional two-sample Mendelian randomization study. Revolutionizing the treatment of intervertebral disc degeneration: an approach based on molecular typing. Beyond weight loss: exploring the neurological ramifications of altered gut microbiota post-bariatric surgery. ITIH5-mediated fibroblast/macrophage crosstalk exacerbates cardiac remodelling after myocardial infarction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1