Bianca D M van Tol, Anna M Wasynczuk, Steinar Gijze, Oleg A Mayboroda, Jan Nouta, Radboud J E M Dolhain, Manfred Wuhrer, David Falck
{"title":"Comprehensive Immunoglobulin G, A, and M glycopeptide profiling for large-scale biomedical research.","authors":"Bianca D M van Tol, Anna M Wasynczuk, Steinar Gijze, Oleg A Mayboroda, Jan Nouta, Radboud J E M Dolhain, Manfred Wuhrer, David Falck","doi":"10.1016/j.mcpro.2025.100928","DOIUrl":null,"url":null,"abstract":"<p><p>Glycosylation of immunoglobulin G (IgG) is recognized as a key modulator of cellular effector functions. At the same time, an increasing body of evidence underlines the importance of other antibody isotypes, especially IgA and IgM, in pathophysiological conditions. Therefore, methods to efficiently study the complex interplay between isotypes, subclasses, and glycosylation of antibodies during acute and chronic states of inflammation are needed. As a solution, we present an integrated and comprehensive method combining simultaneous affinity enrichment of IgG, IgA, and IgM with a single measurement, glycopeptide-centered LC-MS analysis of all isotypes which provides protein-specific (isotype and subclass), and site-specific N- and O-glycosylation quantitation. A two-protease approach provided individual peptides for each glycosylation site, allowing unambiguous compositional assignment and relative quantitation of glycoforms on the MS<sup>1</sup> level as well as structural confirmation and partial isomer assignment on the MS/MS level. We demonstrate that our methodology can be efficiently applied to large clinical studies revealing differences of antibody glycosylation in woman during and after pregnancy, as well as between healthy donors and patients with rheumatoid arthritis. In addition, this showcased the advantages of our method in comprehensiveness and resolution of isotypes, subclasses, and glycosylation sites as well as its precision and robustness.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100928"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.mcpro.2025.100928","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Glycosylation of immunoglobulin G (IgG) is recognized as a key modulator of cellular effector functions. At the same time, an increasing body of evidence underlines the importance of other antibody isotypes, especially IgA and IgM, in pathophysiological conditions. Therefore, methods to efficiently study the complex interplay between isotypes, subclasses, and glycosylation of antibodies during acute and chronic states of inflammation are needed. As a solution, we present an integrated and comprehensive method combining simultaneous affinity enrichment of IgG, IgA, and IgM with a single measurement, glycopeptide-centered LC-MS analysis of all isotypes which provides protein-specific (isotype and subclass), and site-specific N- and O-glycosylation quantitation. A two-protease approach provided individual peptides for each glycosylation site, allowing unambiguous compositional assignment and relative quantitation of glycoforms on the MS1 level as well as structural confirmation and partial isomer assignment on the MS/MS level. We demonstrate that our methodology can be efficiently applied to large clinical studies revealing differences of antibody glycosylation in woman during and after pregnancy, as well as between healthy donors and patients with rheumatoid arthritis. In addition, this showcased the advantages of our method in comprehensiveness and resolution of isotypes, subclasses, and glycosylation sites as well as its precision and robustness.
期刊介绍:
The mission of MCP is to foster the development and applications of proteomics in both basic and translational research. MCP will publish manuscripts that report significant new biological or clinical discoveries underpinned by proteomic observations across all kingdoms of life. Manuscripts must define the biological roles played by the proteins investigated or their mechanisms of action.
The journal also emphasizes articles that describe innovative new computational methods and technological advancements that will enable future discoveries. Manuscripts describing such approaches do not have to include a solution to a biological problem, but must demonstrate that the technology works as described, is reproducible and is appropriate to uncover yet unknown protein/proteome function or properties using relevant model systems or publicly available data.
Scope:
-Fundamental studies in biology, including integrative "omics" studies, that provide mechanistic insights
-Novel experimental and computational technologies
-Proteogenomic data integration and analysis that enable greater understanding of physiology and disease processes
-Pathway and network analyses of signaling that focus on the roles of post-translational modifications
-Studies of proteome dynamics and quality controls, and their roles in disease
-Studies of evolutionary processes effecting proteome dynamics, quality and regulation
-Chemical proteomics, including mechanisms of drug action
-Proteomics of the immune system and antigen presentation/recognition
-Microbiome proteomics, host-microbe and host-pathogen interactions, and their roles in health and disease
-Clinical and translational studies of human diseases
-Metabolomics to understand functional connections between genes, proteins and phenotypes