6PPD induces apoptosis and autophagy in SH-SY5Y cells via ROS-mediated PI3K/AKT/mTOR pathway: In vitro and in silico approaches

IF 4.8 3区 医学 Q1 PHARMACOLOGY & PHARMACY Toxicology Pub Date : 2025-02-19 DOI:10.1016/j.tox.2025.154091
Ziwei Wang, Shutao Wang, Yingying Liu, Xingyu Wang, Wanlun Li, Hong Qi, Hou You
{"title":"6PPD induces apoptosis and autophagy in SH-SY5Y cells via ROS-mediated PI3K/AKT/mTOR pathway: In vitro and in silico approaches","authors":"Ziwei Wang,&nbsp;Shutao Wang,&nbsp;Yingying Liu,&nbsp;Xingyu Wang,&nbsp;Wanlun Li,&nbsp;Hong Qi,&nbsp;Hou You","doi":"10.1016/j.tox.2025.154091","DOIUrl":null,"url":null,"abstract":"<div><div>N-(1,3-dimethylbutyl)-N’-phenyl-p-phenylenediamine (6PPD), an extensively employed antioxidant in rubber materials, is considered as an emerging contaminant. 6PPD was proven to have potential neurotoxicity, which poses risks to human health. However, the research on its neurotoxicity is still limited. This work explored the neurotoxicity of 6PPD to SH-SY5Y cells and in-depth mechanisms with a combination of <em>in vitro</em> and <em>in silico</em> approaches. Our results indicated that 6PPD could reduce cell viability and cause oxidative damage by increasing reactive oxygen species (ROS) accumulation and altering the levels of glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA). 6PPD induced neuronal apoptosis of mitochondrial pathway and autophagy dysfunction, as characterized by the increased expressions of Cleaved caspase-3, Bax/Bcl-2, Beclin-1, LC3-II/I, and P62. 6PPD downregulated the expression of PI3K, p-AKT, and p-mTOR, while the PI3K inhibitor suppressed PI3K/AKT/mTOR pathway and promoted both apoptosis and autophagy, indicating that PI3K/AKT/mTOR pathway was involved in 6PPD-induced apoptosis and autophagy. The inhibition of this pathway was attributed to ROS accumulation in SH-SY5Y cells. Molecular docking analysis further revealed that 6PPD exhibits strong binding affinity to PI3K, AKT, and mTOR protein molecules, which could effectively interfere with downstream signaling pathways. These findings enrich the understanding of 6PPD-induced neurotoxicity and contribute to the evaluation of ecological risks associated with 6PPD.</div></div>","PeriodicalId":23159,"journal":{"name":"Toxicology","volume":"513 ","pages":"Article 154091"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300483X25000472","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

N-(1,3-dimethylbutyl)-N’-phenyl-p-phenylenediamine (6PPD), an extensively employed antioxidant in rubber materials, is considered as an emerging contaminant. 6PPD was proven to have potential neurotoxicity, which poses risks to human health. However, the research on its neurotoxicity is still limited. This work explored the neurotoxicity of 6PPD to SH-SY5Y cells and in-depth mechanisms with a combination of in vitro and in silico approaches. Our results indicated that 6PPD could reduce cell viability and cause oxidative damage by increasing reactive oxygen species (ROS) accumulation and altering the levels of glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA). 6PPD induced neuronal apoptosis of mitochondrial pathway and autophagy dysfunction, as characterized by the increased expressions of Cleaved caspase-3, Bax/Bcl-2, Beclin-1, LC3-II/I, and P62. 6PPD downregulated the expression of PI3K, p-AKT, and p-mTOR, while the PI3K inhibitor suppressed PI3K/AKT/mTOR pathway and promoted both apoptosis and autophagy, indicating that PI3K/AKT/mTOR pathway was involved in 6PPD-induced apoptosis and autophagy. The inhibition of this pathway was attributed to ROS accumulation in SH-SY5Y cells. Molecular docking analysis further revealed that 6PPD exhibits strong binding affinity to PI3K, AKT, and mTOR protein molecules, which could effectively interfere with downstream signaling pathways. These findings enrich the understanding of 6PPD-induced neurotoxicity and contribute to the evaluation of ecological risks associated with 6PPD.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Toxicology
Toxicology 医学-毒理学
CiteScore
7.80
自引率
4.40%
发文量
222
审稿时长
23 days
期刊介绍: Toxicology is an international, peer-reviewed journal that publishes only the highest quality original scientific research and critical reviews describing hypothesis-based investigations into mechanisms of toxicity associated with exposures to xenobiotic chemicals, particularly as it relates to human health. In this respect "mechanisms" is defined on both the macro (e.g. physiological, biological, kinetic, species, sex, etc.) and molecular (genomic, transcriptomic, metabolic, etc.) scale. Emphasis is placed on findings that identify novel hazards and that can be extrapolated to exposures and mechanisms that are relevant to estimating human risk. Toxicology also publishes brief communications, personal commentaries and opinion articles, as well as concise expert reviews on contemporary topics. All research and review articles published in Toxicology are subject to rigorous peer review. Authors are asked to contact the Editor-in-Chief prior to submitting review articles or commentaries for consideration for publication in Toxicology.
期刊最新文献
Effects of Methoxychlor on Broiler Gut Microbiota and Liver and its Residue Accumulation Risk to Human Health. Molecular mechanism of programmed cell death in drug-induced neuronal damage: A special focus on ketamine-induced neurotoxicity Synergistic effects of lead and copper co-exposure on promoting oxidative stress and apoptosis in the neuronal cells Editorial Board Copper oxide nanoparticles disrupt lysosomal function and promote foam cell formation in RAW264.7 macrophages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1