Multispectral images reconstruction using median filtering based spectral correlation

IF 4.2 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Image and Vision Computing Pub Date : 2025-02-21 DOI:10.1016/j.imavis.2025.105462
Vishwas Rathi , Abhilasha Sharma , Amit Kumar Singh
{"title":"Multispectral images reconstruction using median filtering based spectral correlation","authors":"Vishwas Rathi ,&nbsp;Abhilasha Sharma ,&nbsp;Amit Kumar Singh","doi":"10.1016/j.imavis.2025.105462","DOIUrl":null,"url":null,"abstract":"<div><div>Multispectral images are widely utilized in various computer vision applications because they capture more information than traditional color images. Multispectral imaging systems utilize a multispectral filter array (MFA), an extension of the color filter array found in standard RGB cameras. This approach provides an efficient, cost-effective, and practical method for capturing multispectral images. The primary challenge with multispectral imaging systems using an MFA is the significant undersampling of spectral bands in the mosaicked image. This occurs because a multispectral mosaic image contains a greater number of spectral bands compared to an RGB mosaicked image, leading to reduced sampling density per band. Now, multispectral demosaicing algorithm is required to generate the complete multispectral image from the mosaicked image. The effectiveness of demosaicing algorithms relies heavily on the efficient utilization of spatial and spectral correlations inherent in mosaicked images. In the proposed method, a binary tree-based MFA pattern is employed to capture the mosaicked image. Rather than directly leveraging spectral correlations between bands, median filtering is applied to the spectral differences to mitigate the impact of noise on these correlations. Experimental results demonstrate that the proposed method achieves an improvement of 1.03 dB and 0.92 dB on average from 5-band to 10-band multispectral images from the widely used TokyoTech and CAVE datasets, respectively.</div></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"156 ","pages":"Article 105462"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885625000502","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Multispectral images are widely utilized in various computer vision applications because they capture more information than traditional color images. Multispectral imaging systems utilize a multispectral filter array (MFA), an extension of the color filter array found in standard RGB cameras. This approach provides an efficient, cost-effective, and practical method for capturing multispectral images. The primary challenge with multispectral imaging systems using an MFA is the significant undersampling of spectral bands in the mosaicked image. This occurs because a multispectral mosaic image contains a greater number of spectral bands compared to an RGB mosaicked image, leading to reduced sampling density per band. Now, multispectral demosaicing algorithm is required to generate the complete multispectral image from the mosaicked image. The effectiveness of demosaicing algorithms relies heavily on the efficient utilization of spatial and spectral correlations inherent in mosaicked images. In the proposed method, a binary tree-based MFA pattern is employed to capture the mosaicked image. Rather than directly leveraging spectral correlations between bands, median filtering is applied to the spectral differences to mitigate the impact of noise on these correlations. Experimental results demonstrate that the proposed method achieves an improvement of 1.03 dB and 0.92 dB on average from 5-band to 10-band multispectral images from the widely used TokyoTech and CAVE datasets, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Image and Vision Computing
Image and Vision Computing 工程技术-工程:电子与电气
CiteScore
8.50
自引率
8.50%
发文量
143
审稿时长
7.8 months
期刊介绍: Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.
期刊最新文献
Editorial Board Early progression detection from MCI to AD using multi-view MRI for enhanced assisted living An edge-aware high-resolution framework for camouflaged object detection MUNet: A lightweight Mamba-based Under-Display Camera restoration network Adaptive scale matching for remote sensing object detection based on aerial images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1