Vishwas Rathi , Abhilasha Sharma , Amit Kumar Singh
{"title":"Multispectral images reconstruction using median filtering based spectral correlation","authors":"Vishwas Rathi , Abhilasha Sharma , Amit Kumar Singh","doi":"10.1016/j.imavis.2025.105462","DOIUrl":null,"url":null,"abstract":"<div><div>Multispectral images are widely utilized in various computer vision applications because they capture more information than traditional color images. Multispectral imaging systems utilize a multispectral filter array (MFA), an extension of the color filter array found in standard RGB cameras. This approach provides an efficient, cost-effective, and practical method for capturing multispectral images. The primary challenge with multispectral imaging systems using an MFA is the significant undersampling of spectral bands in the mosaicked image. This occurs because a multispectral mosaic image contains a greater number of spectral bands compared to an RGB mosaicked image, leading to reduced sampling density per band. Now, multispectral demosaicing algorithm is required to generate the complete multispectral image from the mosaicked image. The effectiveness of demosaicing algorithms relies heavily on the efficient utilization of spatial and spectral correlations inherent in mosaicked images. In the proposed method, a binary tree-based MFA pattern is employed to capture the mosaicked image. Rather than directly leveraging spectral correlations between bands, median filtering is applied to the spectral differences to mitigate the impact of noise on these correlations. Experimental results demonstrate that the proposed method achieves an improvement of 1.03 dB and 0.92 dB on average from 5-band to 10-band multispectral images from the widely used TokyoTech and CAVE datasets, respectively.</div></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"156 ","pages":"Article 105462"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885625000502","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Multispectral images are widely utilized in various computer vision applications because they capture more information than traditional color images. Multispectral imaging systems utilize a multispectral filter array (MFA), an extension of the color filter array found in standard RGB cameras. This approach provides an efficient, cost-effective, and practical method for capturing multispectral images. The primary challenge with multispectral imaging systems using an MFA is the significant undersampling of spectral bands in the mosaicked image. This occurs because a multispectral mosaic image contains a greater number of spectral bands compared to an RGB mosaicked image, leading to reduced sampling density per band. Now, multispectral demosaicing algorithm is required to generate the complete multispectral image from the mosaicked image. The effectiveness of demosaicing algorithms relies heavily on the efficient utilization of spatial and spectral correlations inherent in mosaicked images. In the proposed method, a binary tree-based MFA pattern is employed to capture the mosaicked image. Rather than directly leveraging spectral correlations between bands, median filtering is applied to the spectral differences to mitigate the impact of noise on these correlations. Experimental results demonstrate that the proposed method achieves an improvement of 1.03 dB and 0.92 dB on average from 5-band to 10-band multispectral images from the widely used TokyoTech and CAVE datasets, respectively.
期刊介绍:
Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.