Sugang Ma , Zhen Wan , Licheng Zhang , Bin Hu , Jinyu Zhang , Xiangmo Zhao
{"title":"HFFTrack: Transformer tracking via hybrid frequency features","authors":"Sugang Ma , Zhen Wan , Licheng Zhang , Bin Hu , Jinyu Zhang , Xiangmo Zhao","doi":"10.1016/j.neunet.2025.107269","DOIUrl":null,"url":null,"abstract":"<div><div>Numerous Transformer-based trackers have emerged due to the powerful global modeling capabilities of the Transformer. Nevertheless, the Transformer is a low-pass filter with insufficient capacity to extract high-frequency features of the target and these features are essential for target location in tracking tasks. To address this issue, this paper proposes a tracking algorithm that utilizes hybrid frequency features, which explores how to improve the performance of the tracker by fusing target multi-frequency features. Specifically, a novel feature extraction network is designed that uses CNN and Transformer to learn the multi-frequency features of the target in stages, taking advantage of both structures and balancing high- and low-frequency information. Secondly, a dual-branch encoder is designed to allow the tracker to capture global information while learning the local features of the target through another branch. Finally, a multi-frequency features fusion network is designed that uses wavelet transform and convolution to fuse high-frequency and low-frequency features. Extensive experimental results demonstrate that our tracker achieves superior tracking performance on six challenging benchmark datasets (i.e., LaSOT, TrackingNet, GOT-10k, TNL2K, UAV123, and OTB100).</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"186 ","pages":"Article 107269"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025001480","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Numerous Transformer-based trackers have emerged due to the powerful global modeling capabilities of the Transformer. Nevertheless, the Transformer is a low-pass filter with insufficient capacity to extract high-frequency features of the target and these features are essential for target location in tracking tasks. To address this issue, this paper proposes a tracking algorithm that utilizes hybrid frequency features, which explores how to improve the performance of the tracker by fusing target multi-frequency features. Specifically, a novel feature extraction network is designed that uses CNN and Transformer to learn the multi-frequency features of the target in stages, taking advantage of both structures and balancing high- and low-frequency information. Secondly, a dual-branch encoder is designed to allow the tracker to capture global information while learning the local features of the target through another branch. Finally, a multi-frequency features fusion network is designed that uses wavelet transform and convolution to fuse high-frequency and low-frequency features. Extensive experimental results demonstrate that our tracker achieves superior tracking performance on six challenging benchmark datasets (i.e., LaSOT, TrackingNet, GOT-10k, TNL2K, UAV123, and OTB100).
期刊介绍:
Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.