Neuroscience-informed nomogram model for early prediction of cognitive impairment in Parkinson's disease

Sudharshan Putha , Swaroop Reddy Gayam , Bhavani Prasad Kasaraneni , Krishna Kanth Kondapaka , Sateesh Kumar Nallamala , Praveen Thuniki
{"title":"Neuroscience-informed nomogram model for early prediction of cognitive impairment in Parkinson's disease","authors":"Sudharshan Putha ,&nbsp;Swaroop Reddy Gayam ,&nbsp;Bhavani Prasad Kasaraneni ,&nbsp;Krishna Kanth Kondapaka ,&nbsp;Sateesh Kumar Nallamala ,&nbsp;Praveen Thuniki","doi":"10.1016/j.neuri.2025.100189","DOIUrl":null,"url":null,"abstract":"<div><div>Cognitive impairment is a common non-motor symptom of Parkinson's disease (PD), significantly affecting patients' quality of life and posing challenges for clinical management. Early prediction of cognitive decline in PD is critical for timely diagnosis and intervention. However, the interplay of multivariate factors such as age, gender, and disease duration complicate early prediction. To address the multifactorial nature of cognitive impairment in PD, this study proposes a neuroscience-informed nomogram model constructed using multivariate logistic regression. The least absolute shrinkage and selection operator (LASSO) algorithm was applied to identify highly correlated clinical variables influencing cognitive function. Subsequently, these variables were integrated into a visualized nomogram model to facilitate early prediction of cognitive impairment (CI) risk. Performance evaluation of the model demonstrated high accuracy, consistency, and clinical applicability, significantly enhancing diagnostic efficiency for neurologists. Furthermore, the model provides visual comparisons of patient distributions across different predictor values, enabling personalized risk assessments. According to experimental analysis and verification, the model demonstrated outstanding prediction with a region under the ROC curve of 0.872 on the original training set and 0.870 on the validation set. Because the anticipated and observed probabilities were so consistent, the model was able to forecast the patient's likelihood of cognitive impairment.</div></div>","PeriodicalId":74295,"journal":{"name":"Neuroscience informatics","volume":"5 2","pages":"Article 100189"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772528625000044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cognitive impairment is a common non-motor symptom of Parkinson's disease (PD), significantly affecting patients' quality of life and posing challenges for clinical management. Early prediction of cognitive decline in PD is critical for timely diagnosis and intervention. However, the interplay of multivariate factors such as age, gender, and disease duration complicate early prediction. To address the multifactorial nature of cognitive impairment in PD, this study proposes a neuroscience-informed nomogram model constructed using multivariate logistic regression. The least absolute shrinkage and selection operator (LASSO) algorithm was applied to identify highly correlated clinical variables influencing cognitive function. Subsequently, these variables were integrated into a visualized nomogram model to facilitate early prediction of cognitive impairment (CI) risk. Performance evaluation of the model demonstrated high accuracy, consistency, and clinical applicability, significantly enhancing diagnostic efficiency for neurologists. Furthermore, the model provides visual comparisons of patient distributions across different predictor values, enabling personalized risk assessments. According to experimental analysis and verification, the model demonstrated outstanding prediction with a region under the ROC curve of 0.872 on the original training set and 0.870 on the validation set. Because the anticipated and observed probabilities were so consistent, the model was able to forecast the patient's likelihood of cognitive impairment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuroscience informatics
Neuroscience informatics Surgery, Radiology and Imaging, Information Systems, Neurology, Artificial Intelligence, Computer Science Applications, Signal Processing, Critical Care and Intensive Care Medicine, Health Informatics, Clinical Neurology, Pathology and Medical Technology
自引率
0.00%
发文量
0
审稿时长
57 days
期刊最新文献
Analyzing infant cry to detect birth asphyxia using a hybrid CNN and feature extraction approach Editorial Board Contents Neuroscience-informed nomogram model for early prediction of cognitive impairment in Parkinson's disease Automated classification of epileptic seizures using modified one-dimensional convolution neural network based on empirical mode decomposition with high accuracy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1