{"title":"Influence of horizontal stress ratio on frictional stability of fault under true triaxial stress conditions","authors":"Zhiming Liang , Zhenyu Zhang , Haoran Dou , Shengpeng Hao","doi":"10.1016/j.tecto.2025.230678","DOIUrl":null,"url":null,"abstract":"<div><div>To understand the fault friction stability and seismic mechanisms under in-situ stress conditions of the Earth's crust, the rectangular prismatic rock sample with a sawcut fault inclined at an angle of 29° to the axis is introduced to withstand the three stress components of true triaxial stress conditions (vertical stress <em>σ</em><sub>v</sub>, horizontal stress <em>σ</em><sub>h</sub>, and stress parallel to the strike of the fault plane <em>σ</em><sub>p</sub>). Velocity-stepping experiments are performed on the sawcut faults to investigate fault frictional behavior and slip stability under different <em>σ</em><sub>h</sub>/<em>σ</em><sub>p</sub> ratios and stress <em>σ</em><sub>p</sub> within the rate-and-state framework. Results indicate that increasing <em>σ</em><sub>h</sub>/<em>σ</em><sub>p</sub> ratios decrease the frictional velocity-dependent parameter (<em>a</em>-<em>b</em>), exhibiting a transition from velocity-strengthening to velocity-weakening behaviors. Shallow grooves develop along the fault surface and act as stress barriers at the low <em>σ</em><sub>h</sub>/<em>σ</em><sub>p</sub> ratio. With increasing <em>σ</em><sub>h</sub>/<em>σ</em><sub>p</sub> ratios, the fault surface gradually converges to uniform smoothness due to asperity abrasion, suggesting that the weakening effect of increasing <em>σ</em><sub>h</sub>/<em>σ</em><sub>p</sub> ratios on fault stability is related to stress redistribution. The enhanced fault critical stiffness (<em>K</em><sub>c</sub>) with increasing <em>σ</em><sub>h</sub>/<em>σ</em><sub>p</sub> ratios promotes fault instability nucleation. Our results reveal that true triaxial in-situ stress states in seismogenic zones exert significant control on frictional behavior and fault stability.</div></div>","PeriodicalId":22257,"journal":{"name":"Tectonophysics","volume":"901 ","pages":"Article 230678"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tectonophysics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040195125000642","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
To understand the fault friction stability and seismic mechanisms under in-situ stress conditions of the Earth's crust, the rectangular prismatic rock sample with a sawcut fault inclined at an angle of 29° to the axis is introduced to withstand the three stress components of true triaxial stress conditions (vertical stress σv, horizontal stress σh, and stress parallel to the strike of the fault plane σp). Velocity-stepping experiments are performed on the sawcut faults to investigate fault frictional behavior and slip stability under different σh/σp ratios and stress σp within the rate-and-state framework. Results indicate that increasing σh/σp ratios decrease the frictional velocity-dependent parameter (a-b), exhibiting a transition from velocity-strengthening to velocity-weakening behaviors. Shallow grooves develop along the fault surface and act as stress barriers at the low σh/σp ratio. With increasing σh/σp ratios, the fault surface gradually converges to uniform smoothness due to asperity abrasion, suggesting that the weakening effect of increasing σh/σp ratios on fault stability is related to stress redistribution. The enhanced fault critical stiffness (Kc) with increasing σh/σp ratios promotes fault instability nucleation. Our results reveal that true triaxial in-situ stress states in seismogenic zones exert significant control on frictional behavior and fault stability.
期刊介绍:
The prime focus of Tectonophysics will be high-impact original research and reviews in the fields of kinematics, structure, composition, and dynamics of the solid arth at all scales. Tectonophysics particularly encourages submission of papers based on the integration of a multitude of geophysical, geological, geochemical, geodynamic, and geotectonic methods