Auto-relay catalysis for the oxidative carboxylation of alkenes into cyclic carbonates by a MOF catalyst†

IF 9.2 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Green Chemistry Pub Date : 2025-01-31 DOI:10.1039/d4gc06360k
Ha Phan , Pol de la Cruz-Sánchez , María Jesús Cabrera-Afonso , Belén Martín-Matute
{"title":"Auto-relay catalysis for the oxidative carboxylation of alkenes into cyclic carbonates by a MOF catalyst†","authors":"Ha Phan ,&nbsp;Pol de la Cruz-Sánchez ,&nbsp;María Jesús Cabrera-Afonso ,&nbsp;Belén Martín-Matute","doi":"10.1039/d4gc06360k","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we present the preparation and application of a new manganoporphyrin Hf-MOF catalyst, Hf-PCN-222(Mn) for the direct oxidative carboxylation of alkenes with CO<sub>2</sub>, leading to the effective formation of cyclic organic carbonates (COCs). In contrast to the conventional two-step process, this one-step methodology eliminates the need for the preparation, purification, and handling of epoxides. Hf-PCN-222(Mn) operates under very mild conditions, enabling the synthesis of a wide variety of COCs from alkenes (23 examples, up to 75% yield), as well as the chemoselective and size-selective carboxylation of dienes (7 examples, up to 61% yield). Additionally, we observed that Hf-PCN-222(Mn) could be recycled multiple times without significant loss of activity, providing insight into the sustainability of this approach.</div></div>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":"27 9","pages":"Pages 2439-2448"},"PeriodicalIF":9.2000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/gc/d4gc06360k?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1463926225000767","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we present the preparation and application of a new manganoporphyrin Hf-MOF catalyst, Hf-PCN-222(Mn) for the direct oxidative carboxylation of alkenes with CO2, leading to the effective formation of cyclic organic carbonates (COCs). In contrast to the conventional two-step process, this one-step methodology eliminates the need for the preparation, purification, and handling of epoxides. Hf-PCN-222(Mn) operates under very mild conditions, enabling the synthesis of a wide variety of COCs from alkenes (23 examples, up to 75% yield), as well as the chemoselective and size-selective carboxylation of dienes (7 examples, up to 61% yield). Additionally, we observed that Hf-PCN-222(Mn) could be recycled multiple times without significant loss of activity, providing insight into the sustainability of this approach.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MOF催化剂对烯烃氧化羧化反应生成环状碳酸盐的自接力催化作用
在这项研究中,我们提出了一种新的锰卟啉Hf-MOF催化剂Hf-PCN-222(Mn)的制备和应用,用于烯烃与CO2的直接氧化羧化,从而有效地形成环有机碳酸盐(COCs)。与传统的两步法相比,这种一步法消除了对环氧化物的制备、纯化和处理的需要。Hf-PCN-222(Mn)在非常温和的条件下工作,能够从烯烃合成各种各样的COCs(23个例子,产率高达75%),以及二烯的化学选择性和尺寸选择性羧化(7个例子,产率高达61%)。此外,我们观察到Hf-PCN-222(Mn)可以多次回收而没有明显的活性损失,这为这种方法的可持续性提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Green Chemistry
Green Chemistry 化学-化学综合
CiteScore
16.10
自引率
7.10%
发文量
677
审稿时长
1.4 months
期刊介绍: Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.
期刊最新文献
Eutectogels as versatile platforms: design strategies and application prospects Correction: Cesium chemistry enables microporous carbon nanofibers with biomimetic ion transport channels for zinc-ion capacitors Catalysis for electrocatalytic C–N coupling towards amino acid synthesis Epoxide isosorbate oleic acid as a sustainable PVC plasticizer: synthesis, performance and cytocompatibility Accelerated biodegradation of polyurethanes through embedded cutinases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1