Efficient photocatalytic H2 evolution over tubular mesoporous carbon nitride with N-vacancy by microwave-assisted synthesis

IF 10.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Science China Chemistry Pub Date : 2025-01-02 DOI:10.1007/s11426-024-2237-1
Yuanlong Pan, Qiang Zhang, Guangzheng Huang, Yannan Luo, Honglin Gao
{"title":"Efficient photocatalytic H2 evolution over tubular mesoporous carbon nitride with N-vacancy by microwave-assisted synthesis","authors":"Yuanlong Pan,&nbsp;Qiang Zhang,&nbsp;Guangzheng Huang,&nbsp;Yannan Luo,&nbsp;Honglin Gao","doi":"10.1007/s11426-024-2237-1","DOIUrl":null,"url":null,"abstract":"<div><p>Modifying the microstructure of photocatalysts while simultaneously introducing vacancies has shown significant potential in enhancing their performance for hydrogen production. Herein, a novel tubular mesoporous carbon nitride (TMCN) with nitrogen vacancies was fabricated using a microwave-assisted synthesis strategy, employing melamine-cyanuric acid supramolecular (MC-S) as the precursor. The optimized TMCN exhibited an outstanding H<sub>2</sub> production rate, approximately 29 times higher than that of pristine g-C<sub>3</sub>N<sub>4</sub>. The N-vacancies serve as sites for reactant adsorption and activation, leading to enhanced delocalization of HOMO-LUMO. Furthermore, the porous structures of TMCN facilitate the reactant diffusion, while its tubular architectures promote the oriented transfer of charge carriers. Crucially, the markedly improved photocatalytic performance of TMCN can be predominantly attributed to the synergistic effects arising from its superior structure and N-vacancy defects. This work opens new possibilities for the simultaneous formation of surface defect states as photocatalytic reaction sites and distinctive structures conducive to charge carrier transport.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":772,"journal":{"name":"Science China Chemistry","volume":"68 3","pages":"866 - 873"},"PeriodicalIF":10.4000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Chemistry","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s11426-024-2237-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Modifying the microstructure of photocatalysts while simultaneously introducing vacancies has shown significant potential in enhancing their performance for hydrogen production. Herein, a novel tubular mesoporous carbon nitride (TMCN) with nitrogen vacancies was fabricated using a microwave-assisted synthesis strategy, employing melamine-cyanuric acid supramolecular (MC-S) as the precursor. The optimized TMCN exhibited an outstanding H2 production rate, approximately 29 times higher than that of pristine g-C3N4. The N-vacancies serve as sites for reactant adsorption and activation, leading to enhanced delocalization of HOMO-LUMO. Furthermore, the porous structures of TMCN facilitate the reactant diffusion, while its tubular architectures promote the oriented transfer of charge carriers. Crucially, the markedly improved photocatalytic performance of TMCN can be predominantly attributed to the synergistic effects arising from its superior structure and N-vacancy defects. This work opens new possibilities for the simultaneous formation of surface defect states as photocatalytic reaction sites and distinctive structures conducive to charge carrier transport.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Science China Chemistry
Science China Chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
14.40
自引率
7.30%
发文量
3787
审稿时长
2.2 months
期刊介绍: Science China Chemistry, co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China and published by Science China Press, publishes high-quality original research in both basic and applied chemistry. Indexed by Science Citation Index, it is a premier academic journal in the field. Categories of articles include: Highlights. Brief summaries and scholarly comments on recent research achievements in any field of chemistry. Perspectives. Concise reports on thelatest chemistry trends of interest to scientists worldwide, including discussions of research breakthroughs and interpretations of important science and funding policies. Reviews. In-depth summaries of representative results and achievements of the past 5–10 years in selected topics based on or closely related to the research expertise of the authors, providing a thorough assessment of the significance, current status, and future research directions of the field.
期刊最新文献
Radical rejuvenates the click-clip reaction Perovskite LiBaH3 for photo-assisted dinitrogen fixation Enhancing anion conductivity in a highly alkali-stable eta topologic Cu(I) framework via strong electrostatic repulsion Correction to “Acceptor planarized type I photosensitizer for lipid droplet-targeted two-photon photodynamic therapy by ferroptosis” Three-dimensional covalent organic frameworks with self-catenated topology for methane storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1