{"title":"Arbitrary \\(d~(\\ge 2)\\)-level \\((t,n)\\) threshold quantum secret reconstruction scheme using symmetric entanglements","authors":"Suchandan Ghosh, Avishek Adhikari","doi":"10.1007/s11128-025-04679-9","DOIUrl":null,"url":null,"abstract":"<div><p>Secret Sharing schemes are very much well-developed in classical cryptography. This paper introduces a novel Secret Sharing scheme that leverages entanglement for secure communication. While our protocol initially focuses on a single reconstructor, it offers the flexibility to dynamically change the reconstructor without compromising the reconstruction security of the shared secret. Traditional Secret Sharing schemes often require secure channels for transmitting secret shares to the reconstructor, which can be costly and complex. In contrast, our proposed protocol eliminates the need for secure channels, significantly reducing implementation overhead. Our proposed scheme introduces a secret reconstruction method for <span>\\(d \\ge 2\\)</span>, expanding upon previous works that primarily focused on <span>\\(d > 2.\\)</span> Our work provides a unified framework that bridges the gap between the cases <span>\\(d = 2\\)</span> and <span>\\(d > 2.\\)</span> We carefully analyze the conditions under which each case achieves its highest level of security, utilizing newly developed concepts, termed Perfectly Symmetric, Almost Symmetric, and queryless or Vacuously Symmetric entanglements. By eliminating the need for Quantum Fourier Transform and Inverse Quantum Fourier Transform, which were commonly used in previous schemes, we simplify the proposed protocol and potentially improve its efficiency. We thoroughly analyze the correctness and security of our proposed scheme, ensuring its reliability and resistance to certain quantum attacks. Finally, we propose a detailed comparison with the previous works.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 3","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-025-04679-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Secret Sharing schemes are very much well-developed in classical cryptography. This paper introduces a novel Secret Sharing scheme that leverages entanglement for secure communication. While our protocol initially focuses on a single reconstructor, it offers the flexibility to dynamically change the reconstructor without compromising the reconstruction security of the shared secret. Traditional Secret Sharing schemes often require secure channels for transmitting secret shares to the reconstructor, which can be costly and complex. In contrast, our proposed protocol eliminates the need for secure channels, significantly reducing implementation overhead. Our proposed scheme introduces a secret reconstruction method for \(d \ge 2\), expanding upon previous works that primarily focused on \(d > 2.\) Our work provides a unified framework that bridges the gap between the cases \(d = 2\) and \(d > 2.\) We carefully analyze the conditions under which each case achieves its highest level of security, utilizing newly developed concepts, termed Perfectly Symmetric, Almost Symmetric, and queryless or Vacuously Symmetric entanglements. By eliminating the need for Quantum Fourier Transform and Inverse Quantum Fourier Transform, which were commonly used in previous schemes, we simplify the proposed protocol and potentially improve its efficiency. We thoroughly analyze the correctness and security of our proposed scheme, ensuring its reliability and resistance to certain quantum attacks. Finally, we propose a detailed comparison with the previous works.
期刊介绍:
Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.