Alichondrichlorin, a Novel Chlorohydrin-Containing Natural Product With Tumoral Cytotoxic Activity Isolated From the Planctomycetota Bacterium Alienimonas chondri LzC2T
Inês R. Vitorino, José D. N. Santos, Gloria Crespo, Ignacio Pérez-Victoria, Jesús Martín, Lorena Rodriguez, Maria C. Ramos, Teresa P. Martins, Pedro N. Leão, Francisca Vicente, Vítor Vasconcelos, Olga M. Lage, Fernando Reyes
{"title":"Alichondrichlorin, a Novel Chlorohydrin-Containing Natural Product With Tumoral Cytotoxic Activity Isolated From the Planctomycetota Bacterium Alienimonas chondri LzC2T","authors":"Inês R. Vitorino, José D. N. Santos, Gloria Crespo, Ignacio Pérez-Victoria, Jesús Martín, Lorena Rodriguez, Maria C. Ramos, Teresa P. Martins, Pedro N. Leão, Francisca Vicente, Vítor Vasconcelos, Olga M. Lage, Fernando Reyes","doi":"10.1111/1751-7915.70076","DOIUrl":null,"url":null,"abstract":"<p>To address the on-going need for chemical novelty and the limited information on <i>Planctomycetota</i> secondary metabolism, we focused on exploring the recently isolated marine planctomycetal strain <i>Alienimonas chondri</i> LzC2<sup>T</sup> to uncover its potential production of novel compounds. This work contemplates the description of a large-scale cultivation study of strain LzC2<sup>T</sup>, followed by metabolite extraction and compound isolation using chromatographic approaches, which resulted in the isolation of a novel molecule designated as alichondrichlorin. Structural elucidation of this new molecule was accomplished by a combination of high-resolution mass spectrometry and nuclear magnetic resonance. The molecule was additionally screened for anti-proliferative bioactivity against human tumoral and non-tumoral cell lines. These cytotoxicity assays revealed a targeted effect of alichondrichlorin in the growth of tumoral cell lines, especially human breast adenocarcinoma MCF-7 cell line (EC<sub>50</sub> = 4.06 μM) without effect on the human non-tumoral THLE-2 cell line (EC<sub>50</sub> > 50 μM).</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"18 2","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70076","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70076","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
To address the on-going need for chemical novelty and the limited information on Planctomycetota secondary metabolism, we focused on exploring the recently isolated marine planctomycetal strain Alienimonas chondri LzC2T to uncover its potential production of novel compounds. This work contemplates the description of a large-scale cultivation study of strain LzC2T, followed by metabolite extraction and compound isolation using chromatographic approaches, which resulted in the isolation of a novel molecule designated as alichondrichlorin. Structural elucidation of this new molecule was accomplished by a combination of high-resolution mass spectrometry and nuclear magnetic resonance. The molecule was additionally screened for anti-proliferative bioactivity against human tumoral and non-tumoral cell lines. These cytotoxicity assays revealed a targeted effect of alichondrichlorin in the growth of tumoral cell lines, especially human breast adenocarcinoma MCF-7 cell line (EC50 = 4.06 μM) without effect on the human non-tumoral THLE-2 cell line (EC50 > 50 μM).
期刊介绍:
Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes