Copulatory Mechanics Reveals a Self-Bracing Mechanism via a Femoral Apophysis in Funnel Weavers (Araneae, Agelenidae)

IF 2.3 2区 生物学 Q2 ECOLOGY Ecology and Evolution Pub Date : 2025-02-23 DOI:10.1002/ece3.71032
Alireza Zamani, Rahşen S. Kaya, Kari Kaunisto, Peter Michalik
{"title":"Copulatory Mechanics Reveals a Self-Bracing Mechanism via a Femoral Apophysis in Funnel Weavers (Araneae, Agelenidae)","authors":"Alireza Zamani,&nbsp;Rahşen S. Kaya,&nbsp;Kari Kaunisto,&nbsp;Peter Michalik","doi":"10.1002/ece3.71032","DOIUrl":null,"url":null,"abstract":"<p>Spiders utilize an indirect method of sperm transfer via specialized male palpal structures. In entelegyne spiders, these structures exhibit a remarkable complexity, comprising various sclerites that interlock with the female genitalia to provide stability and facilitate sperm transfer. Among the four primary coupling mechanisms recognized in entelegyne spiders, one, termed self-bracing, involves interactions between structures stabilizing the expanded copulatory organ during mating. Such interactions can involve elements that are not part of the copulatory organ. The retrolateral tibial apophysis (RTA), a characteristic of the largest group of spiders (RTA clade), is the most prominent structure for this purpose. However, recent research has demonstrated that in spiders that have lost the RTA, other parts of the palp, specifically femoral apophyses, can be involved in self-bracing. The presence of a femoral palpal fapophysis is uncommon in spiders, and only a few taxa possess apophyses on multiple palpal articles, i.e., tibia and femur, the interaction and evolution of which remain to be elucidated. This study investigated the function and interaction of apophyses on different palpal structures for the first time using the funnel weaver <i>Anatextrix monstrabilis</i> (Agelenidae). We specifically examined the hypothesis that the various prominent femoral apophyses are involved in self-bracing despite the presence of an RTA. Micro-computed tomography data of a cryofixed mating pair revealed that at least one of these apophyses functions in self-bracing by fitting into the groove of the embolic base, representing the second documented case of this unique self-bracing mechanism in entelegyne spiders. Furthermore, scanning electron microscopy revealed previously undocumented features in the female genitalia of <i>Anatextrix</i>, including an epigynal fovea, an anterior hood, and well-developed epigynal lateral margins, which potentially play a role in interlocking with male palpal sclerites during copulation. In contrast to ghost spiders (Anyphaenidae), the only other known group of entelegyne spiders exhibiting self-bracing with femoral apophyses, <i>Anatextrix</i> species demonstrate notable differences with regard to the size and shape of these apophyses. Thus, our study indicates that male palpal femoral structures, which do not contact female genitalia during genital coupling, can be subject to strong selection pressures similar to somatic structures that function beyond basic sperm transfer.</p>","PeriodicalId":11467,"journal":{"name":"Ecology and Evolution","volume":"15 2","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece3.71032","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ece3.71032","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Spiders utilize an indirect method of sperm transfer via specialized male palpal structures. In entelegyne spiders, these structures exhibit a remarkable complexity, comprising various sclerites that interlock with the female genitalia to provide stability and facilitate sperm transfer. Among the four primary coupling mechanisms recognized in entelegyne spiders, one, termed self-bracing, involves interactions between structures stabilizing the expanded copulatory organ during mating. Such interactions can involve elements that are not part of the copulatory organ. The retrolateral tibial apophysis (RTA), a characteristic of the largest group of spiders (RTA clade), is the most prominent structure for this purpose. However, recent research has demonstrated that in spiders that have lost the RTA, other parts of the palp, specifically femoral apophyses, can be involved in self-bracing. The presence of a femoral palpal fapophysis is uncommon in spiders, and only a few taxa possess apophyses on multiple palpal articles, i.e., tibia and femur, the interaction and evolution of which remain to be elucidated. This study investigated the function and interaction of apophyses on different palpal structures for the first time using the funnel weaver Anatextrix monstrabilis (Agelenidae). We specifically examined the hypothesis that the various prominent femoral apophyses are involved in self-bracing despite the presence of an RTA. Micro-computed tomography data of a cryofixed mating pair revealed that at least one of these apophyses functions in self-bracing by fitting into the groove of the embolic base, representing the second documented case of this unique self-bracing mechanism in entelegyne spiders. Furthermore, scanning electron microscopy revealed previously undocumented features in the female genitalia of Anatextrix, including an epigynal fovea, an anterior hood, and well-developed epigynal lateral margins, which potentially play a role in interlocking with male palpal sclerites during copulation. In contrast to ghost spiders (Anyphaenidae), the only other known group of entelegyne spiders exhibiting self-bracing with femoral apophyses, Anatextrix species demonstrate notable differences with regard to the size and shape of these apophyses. Thus, our study indicates that male palpal femoral structures, which do not contact female genitalia during genital coupling, can be subject to strong selection pressures similar to somatic structures that function beyond basic sperm transfer.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.40
自引率
3.80%
发文量
1027
审稿时长
3-6 weeks
期刊介绍: Ecology and Evolution is the peer reviewed journal for rapid dissemination of research in all areas of ecology, evolution and conservation science. The journal gives priority to quality research reports, theoretical or empirical, that develop our understanding of organisms and their diversity, interactions between them, and the natural environment. Ecology and Evolution gives prompt and equal consideration to papers reporting theoretical, experimental, applied and descriptive work in terrestrial and aquatic environments. The journal will consider submissions across taxa in areas including but not limited to micro and macro ecological and evolutionary processes, characteristics of and interactions between individuals, populations, communities and the environment, physiological responses to environmental change, population genetics and phylogenetics, relatedness and kin selection, life histories, systematics and taxonomy, conservation genetics, extinction, speciation, adaption, behaviour, biodiversity, species abundance, macroecology, population and ecosystem dynamics, and conservation policy.
期刊最新文献
Adaptation to Leaf Traits of Individual Trees in a Forest Appears Rare in Caterpillars When Rivals Are Absent: Male Aggression Towards Females in Bluefin Killifish Strength of Enemy Release From Parasitoids Is Context Dependent in the Invasive African Fig Fly, Zaprionus indianus Transcriptomic Divergence and Associated Markers Between Genomic Lineages of Silver Catfish (Rhamdia quelen) intSDM: An R Package for Building a Reproducible Workflow for the Field of Integrated Species Distribution Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1