Wildfire and wood smoke effects on human airway epithelial cells: A scoping review

IF 7.7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Environmental Research Pub Date : 2025-02-20 DOI:10.1016/j.envres.2025.121153
Behzad Heibati , Harald Renz , Paige Lacy
{"title":"Wildfire and wood smoke effects on human airway epithelial cells: A scoping review","authors":"Behzad Heibati ,&nbsp;Harald Renz ,&nbsp;Paige Lacy","doi":"10.1016/j.envres.2025.121153","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Wildfires, which occur naturally but are increasingly intensified by climate change, release a complex mixture of organic and inorganic pollutants. These emissions have significant public health implications, contributing to increased morbidity and mortality. Epidemiological and clinical studies have consistently shown that exposure to wildfire smoke exacerbates respiratory conditions such as chronic obstructive pulmonary disease (COPD) and asthma. There are many epidemiological studies of the potential impact of smoke on human health; however, there are remarkably few <em>in vitro</em> studies, and an investigation of the underlying mechanisms of wildfire and wood smoke exposure on airway epithelial cells is required to better understand their toxicity and significance.</div></div><div><h3>Objectives</h3><div>This scoping review aimed to critically examine studies on the association between wildfire and wood smoke exposure and airway epithelial cell responses.</div></div><div><h3>Methods</h3><div>We conducted a systematic search of relevant studies that used a combination of keywords related to wood smoke, wildfire, and epithelial cells and were published up to May 2024. Studies were retrieved from MEDLINE, PubMed, Google Scholar, and Web of Science.</div></div><div><h3>Results</h3><div>Twenty-three studies fulfilled our inclusion criteria and were included. This review highlights inflammation, oxidative stress, and cytotoxicity as key impacts of wildfire and wood smoke on airway epithelial cells, causing lung damage. More studies are needed to understand these effects and guide prevention strategies.</div></div><div><h3>Discussion</h3><div>This scoping review underscores the need for further research to better understand the complex biological endpoints associated with exposure to wildfire/wood smoke, informing strategies to mitigate health effects, ultimately improving health and well-being of population exposed to wildfire/wood smoke.</div></div>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":"272 ","pages":"Article 121153"},"PeriodicalIF":7.7000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013935125004049","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Wildfires, which occur naturally but are increasingly intensified by climate change, release a complex mixture of organic and inorganic pollutants. These emissions have significant public health implications, contributing to increased morbidity and mortality. Epidemiological and clinical studies have consistently shown that exposure to wildfire smoke exacerbates respiratory conditions such as chronic obstructive pulmonary disease (COPD) and asthma. There are many epidemiological studies of the potential impact of smoke on human health; however, there are remarkably few in vitro studies, and an investigation of the underlying mechanisms of wildfire and wood smoke exposure on airway epithelial cells is required to better understand their toxicity and significance.

Objectives

This scoping review aimed to critically examine studies on the association between wildfire and wood smoke exposure and airway epithelial cell responses.

Methods

We conducted a systematic search of relevant studies that used a combination of keywords related to wood smoke, wildfire, and epithelial cells and were published up to May 2024. Studies were retrieved from MEDLINE, PubMed, Google Scholar, and Web of Science.

Results

Twenty-three studies fulfilled our inclusion criteria and were included. This review highlights inflammation, oxidative stress, and cytotoxicity as key impacts of wildfire and wood smoke on airway epithelial cells, causing lung damage. More studies are needed to understand these effects and guide prevention strategies.

Discussion

This scoping review underscores the need for further research to better understand the complex biological endpoints associated with exposure to wildfire/wood smoke, informing strategies to mitigate health effects, ultimately improving health and well-being of population exposed to wildfire/wood smoke.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Research
Environmental Research 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
12.60
自引率
8.40%
发文量
2480
审稿时长
4.7 months
期刊介绍: The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.
期刊最新文献
A gut bacterial supplement for Asian honey bee (Apis cerana) enhances host tolerance to nitenpyram: Insight from microbiota–gut–brain axis Metatranscriptomics sheds light on electron transfer in anammox bacteria enhanced by the redox mediator neutral red Synergistic microalgae-duckweed systems for enhanced aquaculture wastewater treatment, biomass recovery, and CO2 sequestration: A novel approach for sustainable resource recovery Metabolic and ecological responses of denitrifying consortia to different carbon source strategies under fluctuating C/N conditions Fe3+ addition as a promising strategy to enhance the pollutant removal performance and mitigate the membrane fouling of a laboratory-scale membrane bioreactor treating sulfamethoxazole wastewater
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1