Screening and Characteristics of Cadmium-Tolerant Microorganisms in Soil Remediation.

IF 2.7 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES Bulletin of Environmental Contamination and Toxicology Pub Date : 2025-02-22 DOI:10.1007/s00128-024-03986-8
Lei Xiao, Luxuan Feng, Xiaofeng Chen, Jinghua Yao, Yunyun Li, Xiujuan Feng
{"title":"Screening and Characteristics of Cadmium-Tolerant Microorganisms in Soil Remediation.","authors":"Lei Xiao, Luxuan Feng, Xiaofeng Chen, Jinghua Yao, Yunyun Li, Xiujuan Feng","doi":"10.1007/s00128-024-03986-8","DOIUrl":null,"url":null,"abstract":"<p><p>Cadmium (Cd) pollution of soil is a severe environmental problem. Bioremediation of Cd-contaminated soil is an environmentally friendly and low-cost remediation method. In this work, three Cd-tolerant fungi strains, named L1, L2, and L3, were screened and domesticated. The adsorption characterization and the remediation effect of the three strains were investigated. The results show that the adsorption efficiency (AE) of Cd by the three strains reached 83.6%,73.1% and 57.1%, respectively. Scanning electron microscopy (SEM) revealed that the surface of Cd-tolerant fungus (L1) is rough, with many indents and excellent Cd adsorption sites. The prepared microbial agents reduced the exchangeable Cd content and increased other Cd contents in highly Cd-contaminated soil. In addition, the number of microorganisms and the activities of catalase and urease in the soil were also improved. The screened fungi have the remediation abilities for Cd-contaminated soil. This work aims to investigate the remediation mechanism and effect of Cd-tolerant microorganism on Cd-contaminated soil, and provide a theoretical basis for practical application.</p>","PeriodicalId":501,"journal":{"name":"Bulletin of Environmental Contamination and Toxicology","volume":"114 3","pages":"35"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846725/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Environmental Contamination and Toxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00128-024-03986-8","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Cadmium (Cd) pollution of soil is a severe environmental problem. Bioremediation of Cd-contaminated soil is an environmentally friendly and low-cost remediation method. In this work, three Cd-tolerant fungi strains, named L1, L2, and L3, were screened and domesticated. The adsorption characterization and the remediation effect of the three strains were investigated. The results show that the adsorption efficiency (AE) of Cd by the three strains reached 83.6%,73.1% and 57.1%, respectively. Scanning electron microscopy (SEM) revealed that the surface of Cd-tolerant fungus (L1) is rough, with many indents and excellent Cd adsorption sites. The prepared microbial agents reduced the exchangeable Cd content and increased other Cd contents in highly Cd-contaminated soil. In addition, the number of microorganisms and the activities of catalase and urease in the soil were also improved. The screened fungi have the remediation abilities for Cd-contaminated soil. This work aims to investigate the remediation mechanism and effect of Cd-tolerant microorganism on Cd-contaminated soil, and provide a theoretical basis for practical application.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.60
自引率
3.70%
发文量
230
审稿时长
1.7 months
期刊介绍: The Bulletin of Environmental Contamination and Toxicology(BECT) is a peer-reviewed journal that offers rapid review and publication. Accepted submissions will be presented as clear, concise reports of current research for a readership concerned with environmental contamination and toxicology. Scientific quality and clarity are paramount.
期刊最新文献
Ecological Toxicity Effects of Artemisinin Algicidal (AMA) on Submerged Plant Vallisneria natans. Screening and Characteristics of Cadmium-Tolerant Microorganisms in Soil Remediation. The Carbon Mineralization in Different Soil Textures Affected by Wheat Straw and Soil Salinity. Zinc Sulfur Nanoparticles Cause Both the Negatory Vitality and Bioaccumulation on Gammarus pulex. Surfactant Enhancement in Degradation of Phenanthrene Contaminated Soil by Sodium Persulfate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1