Neuroprotective effects of berberine in preclinical models of ischemic stroke: a systematic review.

IF 2.8 3区 医学 Q2 PHARMACOLOGY & PHARMACY BMC Pharmacology & Toxicology Pub Date : 2025-02-21 DOI:10.1186/s40360-025-00843-0
Ghasem Dolatkhah Laein, Elahe Boumeri, Saghar Ghanbari, Amin Bagherian, Fatemeh Ahmadinasab, Vahid Poudineh, Shima Payandeh, Negar Rashidi
{"title":"Neuroprotective effects of berberine in preclinical models of ischemic stroke: a systematic review.","authors":"Ghasem Dolatkhah Laein, Elahe Boumeri, Saghar Ghanbari, Amin Bagherian, Fatemeh Ahmadinasab, Vahid Poudineh, Shima Payandeh, Negar Rashidi","doi":"10.1186/s40360-025-00843-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/objective: </strong>Berberine, a naturally occurring alkaloid, has shown promise as a neuroprotective agent in preclinical models of ischemic stroke. This systematic review aims to comprehensively evaluate the neuroprotective effects of berberine in animal models of cerebral ischemia and elucidate its potential mechanisms of action.</p><p><strong>Methods: </strong>A systematic search was conducted across nine databases, including PubMed, Embase, Cochrane CENTRAL, Web of Science, Scopus, ScienceDirect, Europe PMC, DOAJ, and Google Scholar, from inception to June 30, 2024. Controlled in vivo studies investigating the neuroprotective effects of berberine in animal models of focal cerebral ischemia were included. Two independent reviewers screened studies, extracted data, and assessed the risk of bias using the SYRCLE tool.</p><p><strong>Results: </strong>Eighteen studies met the inclusion criteria, encompassing various animal models of ischemic stroke. Berberine treatment consistently resulted in significant reductions in infarct volume and improvements in neurological function compared to control groups. Specifically, berberine doses ranging from 10 mg/kg to 300 mg/kg significantly decreased infarct sizes (p < 0.05). Berberine also exhibited anti-inflammatory effects by reducing pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6, and downregulating the TLR4/NF-κB signaling pathway (p < 0.05). Antioxidant effects were evidenced by decreased malondialdehyde levels and increased antioxidant enzymes like superoxide dismutase and glutathione (p < 0.05). Additional findings from studies with smaller sample sizes indicated that berberine reduced apoptotic cell death by decreasing TUNEL-positive cells and modulating apoptosis-related proteins, including increasing Bcl-2 and decreasing cleaved caspase-3 levels (p < 0.05). Berberine also promoted neurogenesis and synaptic plasticity by increasing the expression of BDNF, TrkB, and synaptic proteins SYP and PSD95 (p < 0.05), and enhanced autophagic flux by modulating key autophagy markers (p < 0.05). The risk of bias varied among studies, with some lacking detailed reporting on randomization and blinding procedures.</p><p><strong>Conclusion: </strong>Berberine demonstrates significant neuroprotective effects in preclinical models of ischemic stroke through multiple mechanisms, including anti-inflammatory, antioxidant, anti-apoptotic, and neuroregenerative actions. These findings support the potential of berberine as a multifaceted therapeutic agent for ischemic stroke. Further well-designed clinical trials are warranted to confirm its efficacy and safety in human patients.</p>","PeriodicalId":9023,"journal":{"name":"BMC Pharmacology & Toxicology","volume":"26 1","pages":"40"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11844076/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Pharmacology & Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40360-025-00843-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Background/objective: Berberine, a naturally occurring alkaloid, has shown promise as a neuroprotective agent in preclinical models of ischemic stroke. This systematic review aims to comprehensively evaluate the neuroprotective effects of berberine in animal models of cerebral ischemia and elucidate its potential mechanisms of action.

Methods: A systematic search was conducted across nine databases, including PubMed, Embase, Cochrane CENTRAL, Web of Science, Scopus, ScienceDirect, Europe PMC, DOAJ, and Google Scholar, from inception to June 30, 2024. Controlled in vivo studies investigating the neuroprotective effects of berberine in animal models of focal cerebral ischemia were included. Two independent reviewers screened studies, extracted data, and assessed the risk of bias using the SYRCLE tool.

Results: Eighteen studies met the inclusion criteria, encompassing various animal models of ischemic stroke. Berberine treatment consistently resulted in significant reductions in infarct volume and improvements in neurological function compared to control groups. Specifically, berberine doses ranging from 10 mg/kg to 300 mg/kg significantly decreased infarct sizes (p < 0.05). Berberine also exhibited anti-inflammatory effects by reducing pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6, and downregulating the TLR4/NF-κB signaling pathway (p < 0.05). Antioxidant effects were evidenced by decreased malondialdehyde levels and increased antioxidant enzymes like superoxide dismutase and glutathione (p < 0.05). Additional findings from studies with smaller sample sizes indicated that berberine reduced apoptotic cell death by decreasing TUNEL-positive cells and modulating apoptosis-related proteins, including increasing Bcl-2 and decreasing cleaved caspase-3 levels (p < 0.05). Berberine also promoted neurogenesis and synaptic plasticity by increasing the expression of BDNF, TrkB, and synaptic proteins SYP and PSD95 (p < 0.05), and enhanced autophagic flux by modulating key autophagy markers (p < 0.05). The risk of bias varied among studies, with some lacking detailed reporting on randomization and blinding procedures.

Conclusion: Berberine demonstrates significant neuroprotective effects in preclinical models of ischemic stroke through multiple mechanisms, including anti-inflammatory, antioxidant, anti-apoptotic, and neuroregenerative actions. These findings support the potential of berberine as a multifaceted therapeutic agent for ischemic stroke. Further well-designed clinical trials are warranted to confirm its efficacy and safety in human patients.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
小檗碱在缺血性中风临床前模型中的神经保护作用:系统综述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Pharmacology & Toxicology
BMC Pharmacology & Toxicology PHARMACOLOGY & PHARMACYTOXICOLOGY&nb-TOXICOLOGY
CiteScore
4.80
自引率
0.00%
发文量
87
审稿时长
12 weeks
期刊介绍: BMC Pharmacology and Toxicology is an open access, peer-reviewed journal that considers articles on all aspects of chemically defined therapeutic and toxic agents. The journal welcomes submissions from all fields of experimental and clinical pharmacology including clinical trials and toxicology.
期刊最新文献
Neuroprotective effects of berberine in preclinical models of ischemic stroke: a systematic review. Real-world safety analysis of deutetrabenazine post-marketing: a disproportionality study leveraging the FDA Adverse Event Reporting System (FAERS) database. A pharmacovigilance study of olanzapine/samidorphan based on FDA Adverse Event Reporting System (FAERS). Aspirin plus clopidogrel versus cilostazol -based triple antiplatelet therapy in patients with ischemic heart disease undergoing PCI: a systematic review and meta-analysis of randomized controlled trials. Comparison of serious adverse effects of methylphenidate, atomoxetine and amphetamine in the treatment of ADHD: an adverse event analysis based on the FAERS database.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1