Application of causal forests to randomised controlled trial data to identify heterogeneous treatment effects: a case study.

IF 3.9 3区 医学 Q1 HEALTH CARE SCIENCES & SERVICES BMC Medical Research Methodology Pub Date : 2025-02-22 DOI:10.1186/s12874-025-02489-2
Eleanor Van Vogt, Anthony C Gordon, Karla Diaz-Ordaz, Suzie Cro
{"title":"Application of causal forests to randomised controlled trial data to identify heterogeneous treatment effects: a case study.","authors":"Eleanor Van Vogt, Anthony C Gordon, Karla Diaz-Ordaz, Suzie Cro","doi":"10.1186/s12874-025-02489-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Classical approaches to subgroup analysis in randomised controlled trials (RCTs) to identify heterogeneous treatment effects (HTEs) involve testing the interaction between each pre-specified possible treatment effect modifier and the treatment effect. However, individual significant interactions may not always yield clinically actionable subgroups, particularly for continuous covariates. Non-parametric causal machine learning approaches are flexible alternatives for estimating HTEs across many possible treatment effect modifiers in a single analysis.</p><p><strong>Methods: </strong>We conducted a secondary analysis of the VANISH RCT, which compared the early use of vasopressin with norepinephrine on renal failure-free survival for patients with septic shock at 28 days. We used classical (separate tests for interaction with Bonferroni correction), data-adaptive (hierarchical lasso regression), and non-parametric causal machine learning (causal forest) methods to analyse HTEs for the primary outcome of being alive at 28 days. Causal forests comprise honest causal trees, which use sample splitting to determine tree splits and estimate treatment effects separately. The modal initial (root) splits of the causal forest were extracted, and the mean value was used as a threshold to partition the population into subgroups with different treatment effects.</p><p><strong>Results: </strong>All three models found evidence of HTE with serum potassium levels. Univariable logistic regression OR 0.435 (95%CI [0.270, 0.683]. p = 0.0004), hierarchical lasso logistic regression standardised OR: 0.604 (95% CI 0.259, 0.701), lambda = 0.0049. Hierarchical lasso kept the interaction between the treatment and serum potassium, sodium level, minimum temperature, platelet count and presence of ischemic heart disease. The causal forest approach found some evidence of HTE (p = 0.124). When extracting root splits, the modal split was on serum potassium (mean applied threshold of 4.68 mmol/L). When dividing the patient population into subgroups based on the mean initial root threshold, risk differences in being alive at 28 days were 0.069 (95%CI [-0.032, 0.169]) and - 0.257 (95%CI [-0.368, -0.146]) with serum potassium ≤ 4.68 and > 4.68 respectively.</p><p><strong>Conclusions: </strong>The causal forest agreed with the data-adaptive and classical method of subgroup analysis in identifying HTE by serum potassium. Whilst classical and data-adaptive methods may identify sources of HTE, they do not immediately suggest subgroup splits which are clinically actionable. The extraction of root splits in causal forests is a novel approach to obtaining data-derived subgroups, to be further investigated.</p>","PeriodicalId":9114,"journal":{"name":"BMC Medical Research Methodology","volume":"25 1","pages":"50"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846376/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Research Methodology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12874-025-02489-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Classical approaches to subgroup analysis in randomised controlled trials (RCTs) to identify heterogeneous treatment effects (HTEs) involve testing the interaction between each pre-specified possible treatment effect modifier and the treatment effect. However, individual significant interactions may not always yield clinically actionable subgroups, particularly for continuous covariates. Non-parametric causal machine learning approaches are flexible alternatives for estimating HTEs across many possible treatment effect modifiers in a single analysis.

Methods: We conducted a secondary analysis of the VANISH RCT, which compared the early use of vasopressin with norepinephrine on renal failure-free survival for patients with septic shock at 28 days. We used classical (separate tests for interaction with Bonferroni correction), data-adaptive (hierarchical lasso regression), and non-parametric causal machine learning (causal forest) methods to analyse HTEs for the primary outcome of being alive at 28 days. Causal forests comprise honest causal trees, which use sample splitting to determine tree splits and estimate treatment effects separately. The modal initial (root) splits of the causal forest were extracted, and the mean value was used as a threshold to partition the population into subgroups with different treatment effects.

Results: All three models found evidence of HTE with serum potassium levels. Univariable logistic regression OR 0.435 (95%CI [0.270, 0.683]. p = 0.0004), hierarchical lasso logistic regression standardised OR: 0.604 (95% CI 0.259, 0.701), lambda = 0.0049. Hierarchical lasso kept the interaction between the treatment and serum potassium, sodium level, minimum temperature, platelet count and presence of ischemic heart disease. The causal forest approach found some evidence of HTE (p = 0.124). When extracting root splits, the modal split was on serum potassium (mean applied threshold of 4.68 mmol/L). When dividing the patient population into subgroups based on the mean initial root threshold, risk differences in being alive at 28 days were 0.069 (95%CI [-0.032, 0.169]) and - 0.257 (95%CI [-0.368, -0.146]) with serum potassium ≤ 4.68 and > 4.68 respectively.

Conclusions: The causal forest agreed with the data-adaptive and classical method of subgroup analysis in identifying HTE by serum potassium. Whilst classical and data-adaptive methods may identify sources of HTE, they do not immediately suggest subgroup splits which are clinically actionable. The extraction of root splits in causal forests is a novel approach to obtaining data-derived subgroups, to be further investigated.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Medical Research Methodology
BMC Medical Research Methodology 医学-卫生保健
CiteScore
6.50
自引率
2.50%
发文量
298
审稿时长
3-8 weeks
期刊介绍: BMC Medical Research Methodology is an open access journal publishing original peer-reviewed research articles in methodological approaches to healthcare research. Articles on the methodology of epidemiological research, clinical trials and meta-analysis/systematic review are particularly encouraged, as are empirical studies of the associations between choice of methodology and study outcomes. BMC Medical Research Methodology does not aim to publish articles describing scientific methods or techniques: these should be directed to the BMC journal covering the relevant biomedical subject area.
期刊最新文献
Analysis of temporal survival trends: considerations and best practice. Application of causal forests to randomised controlled trial data to identify heterogeneous treatment effects: a case study. Integrating fractional-order SEI1I2I3QCR model with awareness and non-pharmaceutical interventions for optimal COVID-19 pandemic. Assessing the representativeness of large medical data using population stability index. Quality of guidelines for infection management in sepsis: a critical appraisal using the AGREE II instrument.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1