Irf7 aggravates prostatitis by promoting Hif-1α-mediated glycolysis to facilitate M1 polarization.

IF 6.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Cellular and Molecular Life Sciences Pub Date : 2025-02-22 DOI:10.1007/s00018-025-05608-w
Tong Meng, Yi Zhang, Huihui Wang, Weikang Wu, Wei Peng, Jiabin Yue, Cong Huang, Wanqing Liu, Chaozhao Liang, Cheng Yang, Jing Chen
{"title":"Irf7 aggravates prostatitis by promoting Hif-1α-mediated glycolysis to facilitate M1 polarization.","authors":"Tong Meng, Yi Zhang, Huihui Wang, Weikang Wu, Wei Peng, Jiabin Yue, Cong Huang, Wanqing Liu, Chaozhao Liang, Cheng Yang, Jing Chen","doi":"10.1007/s00018-025-05608-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a common disorder associated with voiding symptoms and pain in the pelvic or perineal area. Macrophages, particularly the pro-inflammatory M1 subtype, are crucial initiating of CP/CPPS. Interferon regulatory factor 7 (Irf7) has been implicated in promoting M1 polarization, contributing to the onset and progression of autoimmunity. However, the role of Irf7 in the etiology and progression of CP/CPPS remains unclear.</p><p><strong>Method: </strong>We established the experimental autoimmune prostatitis (EAP) mouse model by subcutaneous injection of prostate antigen combined with complete Freund's adjuvant. Six weeks after the first immunization, we analyzed the prostates, spleen, and blood to assess the degree of prostate inflammation, Irf7 expression levels, glycolysis, and M1 polarization to evaluate whether Irf7 could exacerbate the development of EAP by enhancing Hif-1α transcription, thereby increasing glycolysis and M1 polarization. Further investigations included sh-Irf7 intervention, Dimethyloxalylglycine (a Hif-1α agonist), and in vitro M1 polarization experiments. We also employed ChIP assays, dual-luciferase reporter assays, and q-PCR to explore if Irf7 could directly interact with the Hif-1α promoter in macrophages.</p><p><strong>Results: </strong>In the EAP mouse and cell models, elevated Irf7 expression was observed in inflamed tissues and cells. Reducing Irf7 expression decreased M1 cell glycolysis by inhibiting the nuclear translocation of Hif-1α, thus mitigating M1 cell polarization. Additionally, Irf7 was identified as a transcription factor that regulates Hif-1α transcription by interacting with its promoter in macrophages, confirmed through ChIP and dual-luciferase assays. Co-culturing macrophage cells with 3T3 fibroblasts with reduced Irf7 levels resulted in decreased fibrosis, and a significant reduction in prostate tissue fibrosis was noted in mice with Irf7 knockdown.</p><p><strong>Conclusion: </strong>Our findings indicate that Irf7 can contribute to the development and progression of CP/CPPS by promoting glycolysis, which can enhance both M1 polarization as well as interstitial fibrosis in the prostate. This process was found to be mediated by the upregulation of Hif-1α transcription, presenting new potential therapeutic targets for managing CP/CPPS.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"82 1","pages":"90"},"PeriodicalIF":6.2000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846824/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00018-025-05608-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a common disorder associated with voiding symptoms and pain in the pelvic or perineal area. Macrophages, particularly the pro-inflammatory M1 subtype, are crucial initiating of CP/CPPS. Interferon regulatory factor 7 (Irf7) has been implicated in promoting M1 polarization, contributing to the onset and progression of autoimmunity. However, the role of Irf7 in the etiology and progression of CP/CPPS remains unclear.

Method: We established the experimental autoimmune prostatitis (EAP) mouse model by subcutaneous injection of prostate antigen combined with complete Freund's adjuvant. Six weeks after the first immunization, we analyzed the prostates, spleen, and blood to assess the degree of prostate inflammation, Irf7 expression levels, glycolysis, and M1 polarization to evaluate whether Irf7 could exacerbate the development of EAP by enhancing Hif-1α transcription, thereby increasing glycolysis and M1 polarization. Further investigations included sh-Irf7 intervention, Dimethyloxalylglycine (a Hif-1α agonist), and in vitro M1 polarization experiments. We also employed ChIP assays, dual-luciferase reporter assays, and q-PCR to explore if Irf7 could directly interact with the Hif-1α promoter in macrophages.

Results: In the EAP mouse and cell models, elevated Irf7 expression was observed in inflamed tissues and cells. Reducing Irf7 expression decreased M1 cell glycolysis by inhibiting the nuclear translocation of Hif-1α, thus mitigating M1 cell polarization. Additionally, Irf7 was identified as a transcription factor that regulates Hif-1α transcription by interacting with its promoter in macrophages, confirmed through ChIP and dual-luciferase assays. Co-culturing macrophage cells with 3T3 fibroblasts with reduced Irf7 levels resulted in decreased fibrosis, and a significant reduction in prostate tissue fibrosis was noted in mice with Irf7 knockdown.

Conclusion: Our findings indicate that Irf7 can contribute to the development and progression of CP/CPPS by promoting glycolysis, which can enhance both M1 polarization as well as interstitial fibrosis in the prostate. This process was found to be mediated by the upregulation of Hif-1α transcription, presenting new potential therapeutic targets for managing CP/CPPS.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cellular and Molecular Life Sciences
Cellular and Molecular Life Sciences 生物-生化与分子生物学
CiteScore
13.20
自引率
1.20%
发文量
546
审稿时长
1.0 months
期刊介绍: Journal Name: Cellular and Molecular Life Sciences (CMLS) Location: Basel, Switzerland Focus: Multidisciplinary journal Publishes research articles, reviews, multi-author reviews, and visions & reflections articles Coverage: Latest aspects of biological and biomedical research Areas include: Biochemistry and molecular biology Cell biology Molecular and cellular aspects of biomedicine Neuroscience Pharmacology Immunology Additional Features: Welcomes comments on any article published in CMLS Accepts suggestions for topics to be covered
期刊最新文献
Melatonin refines ovarian mitochondrial dysfunction in PCOS by regulating the circadian rhythm gene Clock. Retinitis pigmentosa-linked mutations impair the snRNA unwinding activity of SNRNP200 and reduce pre-mRNA binding of PRPF8. Temporal characterisation and electrophysiological implications of TBI-induced serine/threonine kinase activity in mouse cortex. NEIL3 influences adult neurogenesis and behavioral pattern separation via WNT signaling. Nuclear translocation of CDK5RAP3 regulated by NXF3 promotes the progression of gastric cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1