Identification of subtypes and biomarkers associated with disulfidptosis-related ferroptosis in ulcerative colitis.

IF 2.7 3区 生物学 Hereditas Pub Date : 2025-02-22 DOI:10.1186/s41065-025-00390-y
Yinghao Jiang, Hongyan Meng, Xin Zhang, Jinguang Yang, Chengxin Sun, Xiaoyan Wang
{"title":"Identification of subtypes and biomarkers associated with disulfidptosis-related ferroptosis in ulcerative colitis.","authors":"Yinghao Jiang, Hongyan Meng, Xin Zhang, Jinguang Yang, Chengxin Sun, Xiaoyan Wang","doi":"10.1186/s41065-025-00390-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Disulfidptosis and ferroptosis are different programmed cell death modes, which are closely related to the development of a variety of diseases, but the relationship between them and ulcerative colitis (UC) is still unclear. Therefore, our study aimed to explore the molecular subtypes and biomarkers associated with disulfidptosis-related ferroptosis (DRF) in UC.</p><p><strong>Methods: </strong>We used Pearson analysis to identify DRF genes. Then, we classified 140 UC samples into different subtypes based on the DRF genes and explored the biological and clinical characteristics between them. Next, the hub genes were identified by differential analysis and WGCNA algorithms, and three machine learning algorithms were used to screen biomarkers for UC from hub genes. In addition, we analyzed the relationship between biomarkers of immune cells and transcription factors and predicted natural compounds that might be used to treat UC. Finally, we further verified the reliability of the markers by RT-qPCR experiments.</p><p><strong>Results: </strong>118 DRF genes were identified using Pearson analysis. Based on the expression level of the DRF genes, we classified UC patients into C1 and C2 subtypes, with significant differences in the abundance of immune infiltration and disease activity between the two subtypes. The machine learning algorithms identified three biomarkers, including XBP1, FH, and MAP3K5. Further analyses revealed that the three biomarkers were closely associated with a variety of immune cells and transcription factors. In addition, six natural compounds corresponding to the biomarkers were predicted, which may contribute to the effective treatment of UC. Finally, the expression trends of XBP1, FH, and MAP3K5 in animal experiments were consistent with the results of bioinformatics analysis.</p><p><strong>Conclusion: </strong>In this study, we systematically elucidated the role of DRF genes in the development of UC, and identified three potential biomarkers, providing a new idea for the diagnosis and treatment of UC.</p>","PeriodicalId":12862,"journal":{"name":"Hereditas","volume":"162 1","pages":"27"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846262/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hereditas","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s41065-025-00390-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Disulfidptosis and ferroptosis are different programmed cell death modes, which are closely related to the development of a variety of diseases, but the relationship between them and ulcerative colitis (UC) is still unclear. Therefore, our study aimed to explore the molecular subtypes and biomarkers associated with disulfidptosis-related ferroptosis (DRF) in UC.

Methods: We used Pearson analysis to identify DRF genes. Then, we classified 140 UC samples into different subtypes based on the DRF genes and explored the biological and clinical characteristics between them. Next, the hub genes were identified by differential analysis and WGCNA algorithms, and three machine learning algorithms were used to screen biomarkers for UC from hub genes. In addition, we analyzed the relationship between biomarkers of immune cells and transcription factors and predicted natural compounds that might be used to treat UC. Finally, we further verified the reliability of the markers by RT-qPCR experiments.

Results: 118 DRF genes were identified using Pearson analysis. Based on the expression level of the DRF genes, we classified UC patients into C1 and C2 subtypes, with significant differences in the abundance of immune infiltration and disease activity between the two subtypes. The machine learning algorithms identified three biomarkers, including XBP1, FH, and MAP3K5. Further analyses revealed that the three biomarkers were closely associated with a variety of immune cells and transcription factors. In addition, six natural compounds corresponding to the biomarkers were predicted, which may contribute to the effective treatment of UC. Finally, the expression trends of XBP1, FH, and MAP3K5 in animal experiments were consistent with the results of bioinformatics analysis.

Conclusion: In this study, we systematically elucidated the role of DRF genes in the development of UC, and identified three potential biomarkers, providing a new idea for the diagnosis and treatment of UC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Hereditas
Hereditas Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
3.80
自引率
3.70%
发文量
0
期刊介绍: For almost a century, Hereditas has published original cutting-edge research and reviews. As the Official journal of the Mendelian Society of Lund, the journal welcomes research from across all areas of genetics and genomics. Topics of interest include human and medical genetics, animal and plant genetics, microbial genetics, agriculture and bioinformatics.
期刊最新文献
Identification of subtypes and biomarkers associated with disulfidptosis-related ferroptosis in ulcerative colitis. Disulfidptosis classification of pancreatic carcinoma reveals correlation with clinical prognosis and immune profile. The causal relationships between gut microbiota and venous thromboembolism: a Mendelian randomization study. Identification of biomarkers and mechanism exploration of ferroptosis related genes regulated by m6A in type 2 diabetes mellitus. SREBF1, a target gene of multiple sclerosis and coronary heart disease: based on mendelian randomization study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1