Slope Chain Code-based scale-independent tortuosity measurement on retinal vessels.

IF 3 2区 医学 Q1 OPHTHALMOLOGY Experimental eye research Pub Date : 2025-02-20 DOI:10.1016/j.exer.2025.110286
Zian Fanti, Ulf-Dietrich Braumann, Franziska G Rauscher, Thomas Ebert, Ernesto Bribiesca, M Elena Martinez-Perez
{"title":"Slope Chain Code-based scale-independent tortuosity measurement on retinal vessels.","authors":"Zian Fanti, Ulf-Dietrich Braumann, Franziska G Rauscher, Thomas Ebert, Ernesto Bribiesca, M Elena Martinez-Perez","doi":"10.1016/j.exer.2025.110286","DOIUrl":null,"url":null,"abstract":"<p><p>Retinal vascular tortuosity presents valuable potential as a clinical biomarker for many relevant vascular and systemic diseases. Our work exhibits twofold: first, the definition of a novel scale-invariant metric to measure retinal blood vessel tortuosity; and second, the generation of a local database, called SCALE-TORT, with the intention of providing a means to test the scale invariance property on real retinal vessels rather than on synthetic data. The proposed scale invariant tortuosity metric is based on the Extended Slope Chain Code which uses variable straight-line segments for describing curves. It is focused on the representation of high-definition curves, the length of the segments is a function of the slope changes of the curve. Scale invariance is an important property when several different retinal image settings or different acquisition sources are used during a particular study or in clinical practice. The database SCALE-TORT, introduced herein, was built semi-automatically from digital images containing the coordinates of blood vessel central lines (curves) taken from images of the same eye obtained by two different imaging methodologies: retinal fundus camera and scanning laser ophthalmoscope. The vessel curves extracted from the same eye are paired for images acquired by the fundus camera and those acquired by the scanning laser ophthalmoscope to evaluate the scale invariance of the metric. Ten different tortuosity metrics were implemented and compared including our proposed metric. Three experiments were conducted to test the metrics and their properties. The first aimed to determine which tortuosity metrics possess the following properties: scale invariance, sensitivity to sudden tortuosity changes when the curve remains constant in size, and how they behave when curves are concatenated. In the second experiment, all reviewed metrics were tested on the publicly available RET-TORT database, to compare the results of the specific metric with the tortuosity classification provided by their experts and in comparison with other authors. Finally, in the third experiment, the behavior of different metrics, including those which are scale-invariant, were tested by utilizing the paired retinal vessel curves from our new SCALE-TORT database. In comparison with other tortuosity metrics, we show that the metric Extended Slope Chain Code proposed in this work optimally complies with scale invariance, in addition to having sufficient sensitivity to detect abrupt changes in tortuosity. Easy implementation being a further plus. Furthermore, we present a new and valueable database for scale property evaluation on images of retinal blood vessels called SCALE-TORT. As far as we are aware, there is no public database with these characteristics.</p>","PeriodicalId":12177,"journal":{"name":"Experimental eye research","volume":" ","pages":"110286"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental eye research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.exer.2025.110286","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Retinal vascular tortuosity presents valuable potential as a clinical biomarker for many relevant vascular and systemic diseases. Our work exhibits twofold: first, the definition of a novel scale-invariant metric to measure retinal blood vessel tortuosity; and second, the generation of a local database, called SCALE-TORT, with the intention of providing a means to test the scale invariance property on real retinal vessels rather than on synthetic data. The proposed scale invariant tortuosity metric is based on the Extended Slope Chain Code which uses variable straight-line segments for describing curves. It is focused on the representation of high-definition curves, the length of the segments is a function of the slope changes of the curve. Scale invariance is an important property when several different retinal image settings or different acquisition sources are used during a particular study or in clinical practice. The database SCALE-TORT, introduced herein, was built semi-automatically from digital images containing the coordinates of blood vessel central lines (curves) taken from images of the same eye obtained by two different imaging methodologies: retinal fundus camera and scanning laser ophthalmoscope. The vessel curves extracted from the same eye are paired for images acquired by the fundus camera and those acquired by the scanning laser ophthalmoscope to evaluate the scale invariance of the metric. Ten different tortuosity metrics were implemented and compared including our proposed metric. Three experiments were conducted to test the metrics and their properties. The first aimed to determine which tortuosity metrics possess the following properties: scale invariance, sensitivity to sudden tortuosity changes when the curve remains constant in size, and how they behave when curves are concatenated. In the second experiment, all reviewed metrics were tested on the publicly available RET-TORT database, to compare the results of the specific metric with the tortuosity classification provided by their experts and in comparison with other authors. Finally, in the third experiment, the behavior of different metrics, including those which are scale-invariant, were tested by utilizing the paired retinal vessel curves from our new SCALE-TORT database. In comparison with other tortuosity metrics, we show that the metric Extended Slope Chain Code proposed in this work optimally complies with scale invariance, in addition to having sufficient sensitivity to detect abrupt changes in tortuosity. Easy implementation being a further plus. Furthermore, we present a new and valueable database for scale property evaluation on images of retinal blood vessels called SCALE-TORT. As far as we are aware, there is no public database with these characteristics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Experimental eye research
Experimental eye research 医学-眼科学
CiteScore
6.80
自引率
5.90%
发文量
323
审稿时长
66 days
期刊介绍: The primary goal of Experimental Eye Research is to publish original research papers on all aspects of experimental biology of the eye and ocular tissues that seek to define the mechanisms of normal function and/or disease. Studies of ocular tissues that encompass the disciplines of cell biology, developmental biology, genetics, molecular biology, physiology, biochemistry, biophysics, immunology or microbiology are most welcomed. Manuscripts that are purely clinical or in a surgical area of ophthalmology are not appropriate for submission to Experimental Eye Research and if received will be returned without review.
期刊最新文献
Features That Distinguish Age-Related Macular Degeneration from Aging. MiR-224-3p regulates ferroptosis and inflammation in lens epithelial cells by targeting ACSL4. Slope Chain Code-based scale-independent tortuosity measurement on retinal vessels. Retinal degeneration increases inter-trial variabilities of light-evoked spiking activities in ganglion cells Dissecting the biological complexity of age-related macular degeneration: Is it one disease, multiple separate diseases, or a spectrum?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1