Species-specific seasonal variations in thermal performance curves shape the direct and transgenerational vulnerability to marine heatwaves.

IF 3.5 1区 环境科学与生态学 Q1 ECOLOGY Journal of Animal Ecology Pub Date : 2025-02-21 DOI:10.1111/1365-2656.70016
Khuong V Dinh, Minh T T Vu
{"title":"Species-specific seasonal variations in thermal performance curves shape the direct and transgenerational vulnerability to marine heatwaves.","authors":"Khuong V Dinh, Minh T T Vu","doi":"10.1111/1365-2656.70016","DOIUrl":null,"url":null,"abstract":"<p><p>Research Highlights: Sasaki, M., Finiguerra, M. & Dam, H.G. (2024). Seasonally variable thermal performance curves prevent adverse effects of heatwaves. Journal of Animal Ecology. https://doi.org/10.1111/1365-2656.14221. Marine heatwaves (MHWs) emerge as a devastating stressor that can have direct and transgenerational effects on marine organisms. However, we know very little about how seasonal variations in thermal performance curves (TPCs) may help marine zooplankton cope with these direct and transgenerational effects of MHWs. In a recent study, Sasaki et al. (2024) combined field observations and simulated laboratory heatwave experiments, uncovering seasonal variations in TPCs for key fitness-related traits, including egg and offspring production, hatching success and survivorship in two ecologically important copepod species Acartia tonsa and A. hudsonica. They discovered that the TPC of A. tonsa was highly seasonally variable, allowing them to maintain their thermal optimum of at least 5°C above the field temperature. The transgenerational effects of parental exposure to MHWs on the offspring were minor. In contrast, the TPC of A. hudsonica was relatively unchanged across seasons, suggesting that this species may be highly vulnerable to MHWs, especially during summer. These findings agree with distinct seasonal abundances of the two species in nature: A. hudsonica is primarily abundant during winter and spring while A. tonsa dominates the summer and fall. These findings enhance our understanding of how seasonal variations in TPCs can determine the vulnerability of marine species to heatwaves through direct and transgenerational effects, which are important for ecological risk assessments of marine ecosystems under a rapidly changing climate.</p>","PeriodicalId":14934,"journal":{"name":"Journal of Animal Ecology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Animal Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/1365-2656.70016","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Research Highlights: Sasaki, M., Finiguerra, M. & Dam, H.G. (2024). Seasonally variable thermal performance curves prevent adverse effects of heatwaves. Journal of Animal Ecology. https://doi.org/10.1111/1365-2656.14221. Marine heatwaves (MHWs) emerge as a devastating stressor that can have direct and transgenerational effects on marine organisms. However, we know very little about how seasonal variations in thermal performance curves (TPCs) may help marine zooplankton cope with these direct and transgenerational effects of MHWs. In a recent study, Sasaki et al. (2024) combined field observations and simulated laboratory heatwave experiments, uncovering seasonal variations in TPCs for key fitness-related traits, including egg and offspring production, hatching success and survivorship in two ecologically important copepod species Acartia tonsa and A. hudsonica. They discovered that the TPC of A. tonsa was highly seasonally variable, allowing them to maintain their thermal optimum of at least 5°C above the field temperature. The transgenerational effects of parental exposure to MHWs on the offspring were minor. In contrast, the TPC of A. hudsonica was relatively unchanged across seasons, suggesting that this species may be highly vulnerable to MHWs, especially during summer. These findings agree with distinct seasonal abundances of the two species in nature: A. hudsonica is primarily abundant during winter and spring while A. tonsa dominates the summer and fall. These findings enhance our understanding of how seasonal variations in TPCs can determine the vulnerability of marine species to heatwaves through direct and transgenerational effects, which are important for ecological risk assessments of marine ecosystems under a rapidly changing climate.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Animal Ecology
Journal of Animal Ecology 环境科学-动物学
CiteScore
9.10
自引率
4.20%
发文量
188
审稿时长
3 months
期刊介绍: Journal of Animal Ecology publishes the best original research on all aspects of animal ecology, ranging from the molecular to the ecosystem level. These may be field, laboratory and theoretical studies utilising terrestrial, freshwater or marine systems.
期刊最新文献
Microclimate variability impacts the coexistence of highland and lowland ectotherms. It's time to go-Drivers and plasticity of migration phenology in a short-distance migratory ungulate. Abiotic variables drive different aspects of fish community trait variation and species richness across the continental United States. Sex-specific variation in thermal sensitivity has multiple negative effects on reproductive trait performance. Density-dependent feedback across nested levels of organization in a social primate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1