Test-retest reliability of coupling between cerebrospinal fluid flow and global brain activity after normal sleep and sleep deprivation

IF 4.7 2区 医学 Q1 NEUROIMAGING NeuroImage Pub Date : 2025-02-20 DOI:10.1016/j.neuroimage.2025.121097
Weiwei Zhao , Joy Rao , Ruosi Wang , Ya Chai , Tianxin Mao , Peng Quan , Yao Deng , Wenwen Chen , Shilei Wang , Bowen Guo , Qingyun Zhang , Hengyi Rao
{"title":"Test-retest reliability of coupling between cerebrospinal fluid flow and global brain activity after normal sleep and sleep deprivation","authors":"Weiwei Zhao ,&nbsp;Joy Rao ,&nbsp;Ruosi Wang ,&nbsp;Ya Chai ,&nbsp;Tianxin Mao ,&nbsp;Peng Quan ,&nbsp;Yao Deng ,&nbsp;Wenwen Chen ,&nbsp;Shilei Wang ,&nbsp;Bowen Guo ,&nbsp;Qingyun Zhang ,&nbsp;Hengyi Rao","doi":"10.1016/j.neuroimage.2025.121097","DOIUrl":null,"url":null,"abstract":"<div><div>The glymphatic system (GS) plays a key role in maintaining brain homeostasis by clearing metabolic waste during sleep, with the coupling between global blood-oxygen-level-dependent (gBOLD) and cerebrospinal fluid (CSF) signals serving as a potential marker for glymphatic clearance function. However, the test-retest reliability and spatial heterogeneity of gBOLD-CSF coupling after different sleep conditions remain unclear. In this study, we assessed the test-retest reliability of gBOLD-CSF coupling following either normal sleep or total sleep deprivation (TSD) in 64 healthy adults under controlled laboratory conditions. The reliability was high after normal sleep (ICC = 0.763) but decreased following TSD (ICC = 0.581). Moreover, spatial heterogeneity was evident in participants with normal sleep, with lower-order networks (visual, somatomotor, and attention) showing higher ICC values compared to higher-order networks (default-mode, limbic, and frontoparietal). This spatial variation was less distinct in the TSD group. These results demonstrate the robustness of the gBOLD-CSF coupling method and emphasize the significance of considering sleep history in glymphatic function research.</div></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":"309 ","pages":"Article 121097"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053811925000990","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

The glymphatic system (GS) plays a key role in maintaining brain homeostasis by clearing metabolic waste during sleep, with the coupling between global blood-oxygen-level-dependent (gBOLD) and cerebrospinal fluid (CSF) signals serving as a potential marker for glymphatic clearance function. However, the test-retest reliability and spatial heterogeneity of gBOLD-CSF coupling after different sleep conditions remain unclear. In this study, we assessed the test-retest reliability of gBOLD-CSF coupling following either normal sleep or total sleep deprivation (TSD) in 64 healthy adults under controlled laboratory conditions. The reliability was high after normal sleep (ICC = 0.763) but decreased following TSD (ICC = 0.581). Moreover, spatial heterogeneity was evident in participants with normal sleep, with lower-order networks (visual, somatomotor, and attention) showing higher ICC values compared to higher-order networks (default-mode, limbic, and frontoparietal). This spatial variation was less distinct in the TSD group. These results demonstrate the robustness of the gBOLD-CSF coupling method and emphasize the significance of considering sleep history in glymphatic function research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
NeuroImage
NeuroImage 医学-核医学
CiteScore
11.30
自引率
10.50%
发文量
809
审稿时长
63 days
期刊介绍: NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.
期刊最新文献
Emotional content and semantic structure of dialogues are associated with Interpersonal Neural Synchrony in the Prefrontal Cortex Age and gender-related patterns of arterial transit time and cerebral blood flow in healthy adults Test-retest reliability of coupling between cerebrospinal fluid flow and global brain activity after normal sleep and sleep deprivation Cerebrospinal fluid flow within ventricles and subarachnoid space evaluated by velocity selective spin labeling MRI The modulation of selective attention and divided attention on cross-modal congruence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1