{"title":"Hijacking a real time detection thermocycler for enzymology: Improvement of a fluorescent bulk assay monitoring helicase activity.","authors":"Jean-Philippe Robin, Vincent Mocquet","doi":"10.1016/j.biochi.2025.02.002","DOIUrl":null,"url":null,"abstract":"<p><p>Helicases are enzymes involved in all aspects of nucleic acid synthesis, regulation and degradation. As a consequence, several methods were developed to monitor their enzymatic activity. In this report, we described an improvement of bulk fluorescent helicase assays to overcome their specific limitations (cost, health and safety regulations, etc.). Using a real time detection thermocycler to monitor the fluorescence in real-time, we managed to precisely control the initiation of the helicase reaction through temperature tuning. Therefore, we were able to demonstrate that this setup could provide a qualitative and a quantitative evaluation of the helicase domain of the UPF1 helicase (UPF1-HD) and that several fluorophores could be used in parallel during the same run.</p>","PeriodicalId":93898,"journal":{"name":"Biochimie","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.biochi.2025.02.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Helicases are enzymes involved in all aspects of nucleic acid synthesis, regulation and degradation. As a consequence, several methods were developed to monitor their enzymatic activity. In this report, we described an improvement of bulk fluorescent helicase assays to overcome their specific limitations (cost, health and safety regulations, etc.). Using a real time detection thermocycler to monitor the fluorescence in real-time, we managed to precisely control the initiation of the helicase reaction through temperature tuning. Therefore, we were able to demonstrate that this setup could provide a qualitative and a quantitative evaluation of the helicase domain of the UPF1 helicase (UPF1-HD) and that several fluorophores could be used in parallel during the same run.