{"title":"Enhanced exosome secretion regulated by microglial P2X7R in the medullary dorsal horn contributes to pulpitis-induced pain.","authors":"Jing Zhang, Zhuo Yu, Mingjun Wang, Xiaoning Kang, Xiaoke Wu, Fengjiao Yang, Lu Yang, Shukai Sun, Li-An Wu","doi":"10.1186/s13578-025-01363-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pulpitis is a prevalent oral disease characterized by severe pain. The activation of microglia in the medullary dorsal horn (MDH) is reportedly essential for the central sensitization mechanism associated with pulpitis. The P2X7 receptor (P2X7R) on microglia can trigger the secretion of exosomes enriched with IL-1β, which is involved in inflammation. Thus, we hypothesized that the enhanced exosome secretion regulated by microglial P2X7R in the MDH contributes to pulpitis-induced pain.</p><p><strong>Methods: </strong>An experimental pulpitis model was established in male SD rats to observe pain behaviors. Immunofluorescence staining, western blotting and quantitative real-time PCR were used to analyze the expression of IL-1β and Rab27a, a key protein secreted by exosomes during nociceptive processes. The effects of the exosome inhibitor GW4869 and the P2X7R antagonist Brilliant Blue G (BBG) on microglial P2X7R, exosome secretion and inflammation in the pulpitis model were analyzed. In vitro, microglial cells were cultured to collect exosomes, and stimulation with lipopolysaccharide (LPS), oxidized ATP (oxATP) and GW4869 altered the secretion of exosomes containing IL-1β.</p><p><strong>Results: </strong>In the experimental pulpitis model, the microglial exosome secretion and inflammatory factor release in the MDH were both correlated with the extent of pulpitis-induced pain, with the highest expression occurring on the 7th day. GW4869 and BBG inhibited Rab27a and IL-1β expression, reducing pulpitis-induced pain. In addition, exosomes were successfully extracted by ultracentrifugation in vitro, wherein LPS treatment promoted exosome secretion but GW4869 had the opposite effects on the secretion of exosomes and the IL-1β. Moreover, P2X7R inhibition by oxATP diminished exosome secretion, leading to a reduction in inflammatory responses.</p><p><strong>Conclusion: </strong>This study highlights the regulatory role of microglial P2X7R in increased exosome secretion, indicating the potential utility of P2X7R as a promising target for pulpitis therapy. Our research highlights a new pulpitis mechanism in which exosomes enriched with IL-1β contribute to pulpitis-induced pain, suggesting the crucial roles of exosomes as pain biomarkers and harmful signaling molecules during pulpitis.</p>","PeriodicalId":49095,"journal":{"name":"Cell and Bioscience","volume":"15 1","pages":"28"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11847359/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and Bioscience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13578-025-01363-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Pulpitis is a prevalent oral disease characterized by severe pain. The activation of microglia in the medullary dorsal horn (MDH) is reportedly essential for the central sensitization mechanism associated with pulpitis. The P2X7 receptor (P2X7R) on microglia can trigger the secretion of exosomes enriched with IL-1β, which is involved in inflammation. Thus, we hypothesized that the enhanced exosome secretion regulated by microglial P2X7R in the MDH contributes to pulpitis-induced pain.
Methods: An experimental pulpitis model was established in male SD rats to observe pain behaviors. Immunofluorescence staining, western blotting and quantitative real-time PCR were used to analyze the expression of IL-1β and Rab27a, a key protein secreted by exosomes during nociceptive processes. The effects of the exosome inhibitor GW4869 and the P2X7R antagonist Brilliant Blue G (BBG) on microglial P2X7R, exosome secretion and inflammation in the pulpitis model were analyzed. In vitro, microglial cells were cultured to collect exosomes, and stimulation with lipopolysaccharide (LPS), oxidized ATP (oxATP) and GW4869 altered the secretion of exosomes containing IL-1β.
Results: In the experimental pulpitis model, the microglial exosome secretion and inflammatory factor release in the MDH were both correlated with the extent of pulpitis-induced pain, with the highest expression occurring on the 7th day. GW4869 and BBG inhibited Rab27a and IL-1β expression, reducing pulpitis-induced pain. In addition, exosomes were successfully extracted by ultracentrifugation in vitro, wherein LPS treatment promoted exosome secretion but GW4869 had the opposite effects on the secretion of exosomes and the IL-1β. Moreover, P2X7R inhibition by oxATP diminished exosome secretion, leading to a reduction in inflammatory responses.
Conclusion: This study highlights the regulatory role of microglial P2X7R in increased exosome secretion, indicating the potential utility of P2X7R as a promising target for pulpitis therapy. Our research highlights a new pulpitis mechanism in which exosomes enriched with IL-1β contribute to pulpitis-induced pain, suggesting the crucial roles of exosomes as pain biomarkers and harmful signaling molecules during pulpitis.
期刊介绍:
Cell and Bioscience, the official journal of the Society of Chinese Bioscientists in America, is an open access, peer-reviewed journal that encompasses all areas of life science research.