Thiophene Sulfone Single Crystal as a Reversible Thermoelastic Linear Actuator with an Extended Stroke and Second-Harmonic Generation Switching

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2025-02-24 DOI:10.1021/jacs.4c17448
Zhihua Wang, Rongchao Shi, Ibrahim Tahir, Durga Prasad Karothu, Puxin Cheng, Wenqing Han, Liang Li, Yongshen Zheng, Panče Naumov, Jialiang Xu, Xian-He Bu
{"title":"Thiophene Sulfone Single Crystal as a Reversible Thermoelastic Linear Actuator with an Extended Stroke and Second-Harmonic Generation Switching","authors":"Zhihua Wang, Rongchao Shi, Ibrahim Tahir, Durga Prasad Karothu, Puxin Cheng, Wenqing Han, Liang Li, Yongshen Zheng, Panče Naumov, Jialiang Xu, Xian-He Bu","doi":"10.1021/jacs.4c17448","DOIUrl":null,"url":null,"abstract":"Dynamic organic crystals are becoming recognized as some of the fastest materials for converting light or heat to mechanical work. The degree of deformation and the response time of any actuating material are often exclusive of each other; however, both factors influence the material’s overall performance limits. Unlike polymers, whose disordered structures are not conducive to rapid energy transfer, cooperative phase transitions in dynamic molecular crystals that are amenable to rapid and concerted martensitic-like structure switching could help circumvent that limitation. Here, we report that single crystals of a dibenzothiophene sulfone derivative exhibit extraordinarily large, rapid, and reversible elongation when they undergo a thermally induced phase transition. The value for the linear stroke of ∼15% along the long crystal axis with retention of macroscopic integrity of this material is remarkable and capitalizes on an anisotropic lattice switching with relative changes of 14.8% and −9.5% along its crystallographic <i>a</i> and <i>c</i> axes, respectively, resulting in a visible macroscopic elongation of the crystal. The transitioning crystals deliver forces ranging from 0.19 to 15 μN and a work density of ∼7 × 10<sup>–3</sup> J m<sup>–3</sup>. The phase transformation is accompanied by a change in symmetry between centrosymmetric and noncentrosymmetric space groups and a significant change in both the fluorescence and the second-order nonlinear optical (NLO) response. The combination of these properties makes this material a favorable choice for low-power, precise, and small-scale NLO actuation applications.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"52 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c17448","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Dynamic organic crystals are becoming recognized as some of the fastest materials for converting light or heat to mechanical work. The degree of deformation and the response time of any actuating material are often exclusive of each other; however, both factors influence the material’s overall performance limits. Unlike polymers, whose disordered structures are not conducive to rapid energy transfer, cooperative phase transitions in dynamic molecular crystals that are amenable to rapid and concerted martensitic-like structure switching could help circumvent that limitation. Here, we report that single crystals of a dibenzothiophene sulfone derivative exhibit extraordinarily large, rapid, and reversible elongation when they undergo a thermally induced phase transition. The value for the linear stroke of ∼15% along the long crystal axis with retention of macroscopic integrity of this material is remarkable and capitalizes on an anisotropic lattice switching with relative changes of 14.8% and −9.5% along its crystallographic a and c axes, respectively, resulting in a visible macroscopic elongation of the crystal. The transitioning crystals deliver forces ranging from 0.19 to 15 μN and a work density of ∼7 × 10–3 J m–3. The phase transformation is accompanied by a change in symmetry between centrosymmetric and noncentrosymmetric space groups and a significant change in both the fluorescence and the second-order nonlinear optical (NLO) response. The combination of these properties makes this material a favorable choice for low-power, precise, and small-scale NLO actuation applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Leveraging Immunogenic Cell Death to Enhance the Immune Response against Malignant Pleural Mesothelioma Tumors Thiophene Sulfone Single Crystal as a Reversible Thermoelastic Linear Actuator with an Extended Stroke and Second-Harmonic Generation Switching Antifouling Spiky Nanoelectrodes Enhance Detection of Bacterial mRNA Catalytic Regio- and Enantioselective Hydroformylation of Trisubstituted Alkenes to Construct α-Quaternary Lactams A Dual-Targeted Molecule for Disease-Activatable Proteolysis Targeting Chimeras and Targeted Radionuclide Therapy of Cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1