Thang Cao Doan, Thanh Nhan Nguyen, Anh Ngoc Nguyen and Hyojong Yoo*,
{"title":"Direct 3D Printing of High-Mass-Loaded Metal–Organic Framework Filaments with Excellent Adsorption Ability","authors":"Thang Cao Doan, Thanh Nhan Nguyen, Anh Ngoc Nguyen and Hyojong Yoo*, ","doi":"10.1021/acs.chemmater.4c0328710.1021/acs.chemmater.4c03287","DOIUrl":null,"url":null,"abstract":"<p >Conferring adsorptive properties to 3D printed materials by functionalizing thermoplastic polymers with metal–organic framework (MOF) materials paves the way for fused deposition modeling (FDM) 3D printing. However, to maintain the flexibility of the filament for printing, a low MOF loading mass (<10 wt %) must be maintained, which undesirably reduces the adsorption capability of the printed materials. In this study, 50 wt % HKUST-1 MOF is loaded into polyethylene glycol dimethyl ether (PEGDME) plasticized polylactic acid (PLA) to form a composite (HK@PLA–PEG-50). The high mass loading is achieved by the introduction of PEGDME as a plasticizer and the preparation of a homogeneous composite slurry. Without the post-printing process, the printed sorbent material with a high surface area of 547 m<sup>2</sup> g<sup>–1</sup> (49% relative to that of the originally prepared HKUST-1) has a CO<sub>2</sub> adsorption capacity of 37.7 cm<sup>3</sup> g<sup>–1</sup> at 1 atm and 298 K, with a removal efficiency of 93.4% for 18 mg L<sup>–1</sup> methylene blue (MB) solution. These results prove that HKUST-1 in the filament exhibits adsorption ability without hindrance from the polymer portion, which resulted from the high mass loading of HKUST-1 and led to the interconnection between the particles, thereby avoiding the blocking effect of the PLA polymer. This study demonstrates a promising method for preparing high-mass-loading HKUST-1 composite materials for FDM 3D printing and opens up the possibility of loading other MOF materials with unique properties into polymers for diverse applications.</p>","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"37 4","pages":"1629–1637 1629–1637"},"PeriodicalIF":7.2000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemmater.4c03287","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Conferring adsorptive properties to 3D printed materials by functionalizing thermoplastic polymers with metal–organic framework (MOF) materials paves the way for fused deposition modeling (FDM) 3D printing. However, to maintain the flexibility of the filament for printing, a low MOF loading mass (<10 wt %) must be maintained, which undesirably reduces the adsorption capability of the printed materials. In this study, 50 wt % HKUST-1 MOF is loaded into polyethylene glycol dimethyl ether (PEGDME) plasticized polylactic acid (PLA) to form a composite (HK@PLA–PEG-50). The high mass loading is achieved by the introduction of PEGDME as a plasticizer and the preparation of a homogeneous composite slurry. Without the post-printing process, the printed sorbent material with a high surface area of 547 m2 g–1 (49% relative to that of the originally prepared HKUST-1) has a CO2 adsorption capacity of 37.7 cm3 g–1 at 1 atm and 298 K, with a removal efficiency of 93.4% for 18 mg L–1 methylene blue (MB) solution. These results prove that HKUST-1 in the filament exhibits adsorption ability without hindrance from the polymer portion, which resulted from the high mass loading of HKUST-1 and led to the interconnection between the particles, thereby avoiding the blocking effect of the PLA polymer. This study demonstrates a promising method for preparing high-mass-loading HKUST-1 composite materials for FDM 3D printing and opens up the possibility of loading other MOF materials with unique properties into polymers for diverse applications.
期刊介绍:
The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.