Xiaodong Yan, Wugang Wang, Oleg V. Prezhdo* and Lai Xu*,
{"title":"Boron Phosphide Nanotubes for Electrocatalytic CO Reduction to Multicarbon Products","authors":"Xiaodong Yan, Wugang Wang, Oleg V. Prezhdo* and Lai Xu*, ","doi":"10.1021/acs.chemmater.4c0210610.1021/acs.chemmater.4c02106","DOIUrl":null,"url":null,"abstract":"<p >Developing an efficient catalyst that can reduce CO to economically viable products provides a pathway to achieve carbon neutrality. For this purpose, we introduce and characterize boron phosphide nanotubes, a class of materials that allow one to reach a goal without costly and toxic metal atoms. The tubular configuration imparts a confining effect, facilitating CO adsorption and catalytic reduction into ethanol. By calculating the transition state conditions under different charging and using grand canonical potential kinetics, we establish the transition state energy barriers in the system at different electrochemical potentials. We further elucidate the kinetics and mechanism of the entire reaction process at the microkinetics level and predict the onset potential to be −0.30 V with the Tafel slope of 93.69 mV/dec. Finally, we demonstrate control over concentrations of the products and intermediate species by the choice of pH and the applied potential. The characterized material class and established chemical mechanisms guide design of electrocatalysts for producing multicarbon products.</p>","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"37 4","pages":"1382–1392 1382–1392"},"PeriodicalIF":7.2000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.chemmater.4c02106","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemmater.4c02106","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Developing an efficient catalyst that can reduce CO to economically viable products provides a pathway to achieve carbon neutrality. For this purpose, we introduce and characterize boron phosphide nanotubes, a class of materials that allow one to reach a goal without costly and toxic metal atoms. The tubular configuration imparts a confining effect, facilitating CO adsorption and catalytic reduction into ethanol. By calculating the transition state conditions under different charging and using grand canonical potential kinetics, we establish the transition state energy barriers in the system at different electrochemical potentials. We further elucidate the kinetics and mechanism of the entire reaction process at the microkinetics level and predict the onset potential to be −0.30 V with the Tafel slope of 93.69 mV/dec. Finally, we demonstrate control over concentrations of the products and intermediate species by the choice of pH and the applied potential. The characterized material class and established chemical mechanisms guide design of electrocatalysts for producing multicarbon products.
期刊介绍:
The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.