{"title":"Ferric citrate corroding nickel foam to synthesize carbon quantum dots@nickel–iron layered double hydroxide microspheres for efficient water oxidation","authors":"Yongping Qu , Yuzhen Zhang , Huajun Zhou , Peihua Zhao , Kai Yuan , Rui Zhou , Hui Gao , Yanzhong Wang","doi":"10.1016/j.jcis.2025.02.152","DOIUrl":null,"url":null,"abstract":"<div><div>The design of oxygen evolution reaction (OER) catalysts with high catalytic efficiency and durability is of great significance for promoting hydrogen production via water electrolysis. Here, a one-step hydrothermal method was used to synthesize carbon quantum dots@nickel–iron layered double hydroxide (CQDs@NiFe-LDH) composites based on corrosion engineering. The introduction of carbon quantum dots (CQDs) effectively modulates the electronic structure and charge distribution of nickel–iron layered double hydroxide (NiFe-LDH), resulting in high oxygen evolution reaction with an overpotential of 257 mV at 100 mA cm<sup>−2</sup> and a small Tafel slope of 38.73 mV dec<sup>−1</sup>. Furthermore, CQDs@NiFe-LDH can be operated continuously for 300 and 100 h without the significant performance degradation at a current density of 100 mA cm<sup>−2</sup> in 1 M KOH and seawater solutions, respectively, indicating high catalytic stability. The excellent OER capabilities of CQDs@NiFe-LDH is attributed to the fact that CQDs can not only modulate the electronic structure of NiFe-LDH but also facilitate the transfer of protons between intermediates during the oxygen evolution reaction (OER), thereby enhancing the material’s intrinsic catalytic activity.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"688 ","pages":"Pages 204-214"},"PeriodicalIF":9.4000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725005168","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The design of oxygen evolution reaction (OER) catalysts with high catalytic efficiency and durability is of great significance for promoting hydrogen production via water electrolysis. Here, a one-step hydrothermal method was used to synthesize carbon quantum dots@nickel–iron layered double hydroxide (CQDs@NiFe-LDH) composites based on corrosion engineering. The introduction of carbon quantum dots (CQDs) effectively modulates the electronic structure and charge distribution of nickel–iron layered double hydroxide (NiFe-LDH), resulting in high oxygen evolution reaction with an overpotential of 257 mV at 100 mA cm−2 and a small Tafel slope of 38.73 mV dec−1. Furthermore, CQDs@NiFe-LDH can be operated continuously for 300 and 100 h without the significant performance degradation at a current density of 100 mA cm−2 in 1 M KOH and seawater solutions, respectively, indicating high catalytic stability. The excellent OER capabilities of CQDs@NiFe-LDH is attributed to the fact that CQDs can not only modulate the electronic structure of NiFe-LDH but also facilitate the transfer of protons between intermediates during the oxygen evolution reaction (OER), thereby enhancing the material’s intrinsic catalytic activity.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies