Chuan Fu , Tianyuan Zhou , Tan Guo , Qikui Zhu , Fulin Luo , Bo Du
{"title":"CNN-Transformer and Channel-Spatial Attention based network for hyperspectral image classification with few samples","authors":"Chuan Fu , Tianyuan Zhou , Tan Guo , Qikui Zhu , Fulin Luo , Bo Du","doi":"10.1016/j.neunet.2025.107283","DOIUrl":null,"url":null,"abstract":"<div><div>Hyperspectral image classification is an important foundational technology in the field of Earth observation and remote sensing. In recent years, deep learning has achieved a series of remarkable achievements in this area. These deep learning-based hyperspectral image classifications typically require a large number of annotated samples to train the models. However, obtaining a large number of accurate annotated hyperspectral images for high-altitude or remote areas is usually extremely difficult. In this paper, we propose a novel algorithm, CTA-net, for hyperspectral classification with a small number of samples. First, we proposed a sample expansion scheme to generate a large number of new samples to alleviate the problem of insufficient samples. On this basis, we introduced a novel hyperspectral classification network. The network first utilizes a module based on CNN-Transformer to extract blocks of hyperspectral images, where CNN focuses primarily on local features, while the Transformer module focuses mainly on non-local features. Furthermore, a simple channel-spatial attention module is adopted to further optimize the features. We conducted experiments on multiple hyperspectral image datasets, and the experiments verified the effectiveness of our CTA-net.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"186 ","pages":"Article 107283"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025001625","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Hyperspectral image classification is an important foundational technology in the field of Earth observation and remote sensing. In recent years, deep learning has achieved a series of remarkable achievements in this area. These deep learning-based hyperspectral image classifications typically require a large number of annotated samples to train the models. However, obtaining a large number of accurate annotated hyperspectral images for high-altitude or remote areas is usually extremely difficult. In this paper, we propose a novel algorithm, CTA-net, for hyperspectral classification with a small number of samples. First, we proposed a sample expansion scheme to generate a large number of new samples to alleviate the problem of insufficient samples. On this basis, we introduced a novel hyperspectral classification network. The network first utilizes a module based on CNN-Transformer to extract blocks of hyperspectral images, where CNN focuses primarily on local features, while the Transformer module focuses mainly on non-local features. Furthermore, a simple channel-spatial attention module is adopted to further optimize the features. We conducted experiments on multiple hyperspectral image datasets, and the experiments verified the effectiveness of our CTA-net.
期刊介绍:
Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.