Neural emulator based on physical fields for accelerating the simulation of surface chlorophyll in an Earth System Model

IF 3.1 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Ocean Modelling Pub Date : 2025-02-12 DOI:10.1016/j.ocemod.2024.102491
Bizhi Wu , Shiyao Zheng , Shasha Li, Shanlin Wang
{"title":"Neural emulator based on physical fields for accelerating the simulation of surface chlorophyll in an Earth System Model","authors":"Bizhi Wu ,&nbsp;Shiyao Zheng ,&nbsp;Shasha Li,&nbsp;Shanlin Wang","doi":"10.1016/j.ocemod.2024.102491","DOIUrl":null,"url":null,"abstract":"<div><div>Simulating the ocean biogeochemical module (BGC-enabled) in the Community Earth System Model (CESM) is computationally expensive, often requiring significantly more resources than the physical climate component. In this study, we propose an alternative approach to generate biogeochemical data using a neural network emulator, BGC-UNet, which predicts ocean surface chlorophyll concentrations based on physical fields from CESM, such as solar short-wave heat flux (SHF-QSW), potential temperature (TEMP), and zonal and meridional velocity (UVEL, VVEL). BGC-UNet is designed as a UNet-like architecture and employs a patch-based methodology with dilated sampling to efficiently reconstruct biogeochemical data from physical inputs. This framework potentially enables high-resolution chlorophyll predictions without running full BGC-enabled simulations. Our evaluation demonstrates that BGC-UNet’s outputs closely align with CESM’s simulated surface chlorophyll, supported by both quantitative metrics and visual analysis. Additionally, the emulator achieves a simulation speed approximately 248 times faster than traditional BGC-enabled CESM simulations. Although the current focus is on surface chlorophyll, the model shows potential for future extension to other biogeochemical variables. By leveraging only 40 years of simulated data for training, BGC-UNet replicates the trends observed in CESM, making it a promising tool for accelerating Earth system modeling.</div></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"195 ","pages":"Article 102491"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Modelling","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S146350032400177X","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Simulating the ocean biogeochemical module (BGC-enabled) in the Community Earth System Model (CESM) is computationally expensive, often requiring significantly more resources than the physical climate component. In this study, we propose an alternative approach to generate biogeochemical data using a neural network emulator, BGC-UNet, which predicts ocean surface chlorophyll concentrations based on physical fields from CESM, such as solar short-wave heat flux (SHF-QSW), potential temperature (TEMP), and zonal and meridional velocity (UVEL, VVEL). BGC-UNet is designed as a UNet-like architecture and employs a patch-based methodology with dilated sampling to efficiently reconstruct biogeochemical data from physical inputs. This framework potentially enables high-resolution chlorophyll predictions without running full BGC-enabled simulations. Our evaluation demonstrates that BGC-UNet’s outputs closely align with CESM’s simulated surface chlorophyll, supported by both quantitative metrics and visual analysis. Additionally, the emulator achieves a simulation speed approximately 248 times faster than traditional BGC-enabled CESM simulations. Although the current focus is on surface chlorophyll, the model shows potential for future extension to other biogeochemical variables. By leveraging only 40 years of simulated data for training, BGC-UNet replicates the trends observed in CESM, making it a promising tool for accelerating Earth system modeling.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Ocean Modelling
Ocean Modelling 地学-海洋学
CiteScore
5.50
自引率
9.40%
发文量
86
审稿时长
19.6 weeks
期刊介绍: The main objective of Ocean Modelling is to provide rapid communication between those interested in ocean modelling, whether through direct observation, or through analytical, numerical or laboratory models, and including interactions between physical and biogeochemical or biological phenomena. Because of the intimate links between ocean and atmosphere, involvement of scientists interested in influences of either medium on the other is welcome. The journal has a wide scope and includes ocean-atmosphere interaction in various forms as well as pure ocean results. In addition to primary peer-reviewed papers, the journal provides review papers, preliminary communications, and discussions.
期刊最新文献
High-frequency wave dynamics in mixed seas: The influence of swells on wind waves characteristics Dynamic effects of different turbulence closure schemes on Lagrangian residual velocity in an elongated bay Transit time of deep and intermediate waters in the Gulf of St. Lawrence Inferring diapycnal mixing using the internal wave continuum from the high resolution ocean model Upper ocean biophysical budget analysis during a cyclone using Regional Ocean Modeling System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1