An exogenous encoding sequence based on DNA data storage technology and its application in assisted reproductive technology

IF 2.3 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemistry and Biophysics Reports Pub Date : 2025-02-24 DOI:10.1016/j.bbrep.2025.101962
Zhiqing Huang , Taoli Ding , Zixuan Ni , Yujie Zheng , Na Liu , Tuan Li , Wenchang Lian , Beihong Zheng , Yan Sun
{"title":"An exogenous encoding sequence based on DNA data storage technology and its application in assisted reproductive technology","authors":"Zhiqing Huang ,&nbsp;Taoli Ding ,&nbsp;Zixuan Ni ,&nbsp;Yujie Zheng ,&nbsp;Na Liu ,&nbsp;Tuan Li ,&nbsp;Wenchang Lian ,&nbsp;Beihong Zheng ,&nbsp;Yan Sun","doi":"10.1016/j.bbrep.2025.101962","DOIUrl":null,"url":null,"abstract":"<div><div>Safety and ethical issues are the primary concerns for assisted reproductive technology (ART). However, confusion and contamination of samples are common problems in embryo laboratories, preimplantation genetic test (PGT) laboratories, and third-party medical testing laboratories due to large sample numbers and complex procedures. Once these problems occur, they are often difficult to trace, posing risks and ethical challenges to hospital reproductive centers, third-party medical testing laboratories, and patient families. Therefore, it is necessary to establish an effective and feasible tracing system to ensure sample safety. In this study, we designed an exogenous encoding sequence (EES) based on DNA data storage technology, which provide a unique identification code for each in vitro cultured embryo, effectively avoiding potential risks and ethical problems caused by sample confusion and contamination. This exogenous encoding sequence is a DNA molecule that is non-toxic and structurally stable. We verified that a small amount of exogenous encoding sequence (6∗109 copies/uL) can be amplified together with embryo biopsy cells and detected by various sequencing methods without affecting copy number variants (CNVs). Furthermore, if there is contamination from other samples at a proportion of more than 5 %, it can also be identified through the encoding information of the exogenous encoding sequence. Our study proves that the exogenous encoding sequence designed based on DNA data storage technology is effective and reliable, and can be applied in hospital reproductive centers and third-party medical testing laboratories to improve the safety of in vitro cultured embryos and avoid potential ethical problems in the future.</div></div>","PeriodicalId":8771,"journal":{"name":"Biochemistry and Biophysics Reports","volume":"41 ","pages":"Article 101962"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Biophysics Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405580825000494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Safety and ethical issues are the primary concerns for assisted reproductive technology (ART). However, confusion and contamination of samples are common problems in embryo laboratories, preimplantation genetic test (PGT) laboratories, and third-party medical testing laboratories due to large sample numbers and complex procedures. Once these problems occur, they are often difficult to trace, posing risks and ethical challenges to hospital reproductive centers, third-party medical testing laboratories, and patient families. Therefore, it is necessary to establish an effective and feasible tracing system to ensure sample safety. In this study, we designed an exogenous encoding sequence (EES) based on DNA data storage technology, which provide a unique identification code for each in vitro cultured embryo, effectively avoiding potential risks and ethical problems caused by sample confusion and contamination. This exogenous encoding sequence is a DNA molecule that is non-toxic and structurally stable. We verified that a small amount of exogenous encoding sequence (6∗109 copies/uL) can be amplified together with embryo biopsy cells and detected by various sequencing methods without affecting copy number variants (CNVs). Furthermore, if there is contamination from other samples at a proportion of more than 5 %, it can also be identified through the encoding information of the exogenous encoding sequence. Our study proves that the exogenous encoding sequence designed based on DNA data storage technology is effective and reliable, and can be applied in hospital reproductive centers and third-party medical testing laboratories to improve the safety of in vitro cultured embryos and avoid potential ethical problems in the future.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochemistry and Biophysics Reports
Biochemistry and Biophysics Reports Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
4.60
自引率
0.00%
发文量
191
审稿时长
59 days
期刊介绍: Open access, online only, peer-reviewed international journal in the Life Sciences, established in 2014 Biochemistry and Biophysics Reports (BB Reports) publishes original research in all aspects of Biochemistry, Biophysics and related areas like Molecular and Cell Biology. BB Reports welcomes solid though more preliminary, descriptive and small scale results if they have the potential to stimulate and/or contribute to future research, leading to new insights or hypothesis. Primary criteria for acceptance is that the work is original, scientifically and technically sound and provides valuable knowledge to life sciences research. We strongly believe all results deserve to be published and documented for the advancement of science. BB Reports specifically appreciates receiving reports on: Negative results, Replication studies, Reanalysis of previous datasets.
期刊最新文献
Development and analytical performance of a new research use only (RUO) GP73 automated immunoassay An exogenous encoding sequence based on DNA data storage technology and its application in assisted reproductive technology Development of a novel anti-erythropoietin-producing hepatocellular receptor B6 monoclonal antibody Eb6Mab-3 for flow cytometry Exploration of the role of drug resistance-associated anoikis-related genes in HER2-Negative breast cancer through bioinformatics analysis Effects of alpha-ketoisocaproate in oxidative stress-induced C2C12 myotubes via inhibition of p38 MAPK and ERK1/2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1