Modelling tortuous pathways of H2 and CO2 in organic microstructures for improved gas migration prediction

0 ENERGY & FUELS Gas Science and Engineering Pub Date : 2025-02-24 DOI:10.1016/j.jgsce.2025.205582
Saad Alafnan
{"title":"Modelling tortuous pathways of H2 and CO2 in organic microstructures for improved gas migration prediction","authors":"Saad Alafnan","doi":"10.1016/j.jgsce.2025.205582","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the crucial challenge of precisely modeling how hydrogen and carbon dioxide move and spread within the tight confinement of organic-rich rock formations. This is especially important for understanding potential gas distribution and ensuring the secure containment of these gases during geo-storage operations, where injected gases like hydrogen or carbon dioxide could migrate through the complex network of organic microstructures in source rocks. By combining Grand Canonical Monte Carlo simulations for sorption analysis and molecular dynamics for diffusion assessment, this research offers a comprehensive approach to understanding gas behavior in these complex systems. The study involved constructing kerogen models with varying microporosity (13.7%–32.9%) to delineate the impact of pore structure on gas diffusivity and establish tortuosity-porosity relationships for hydrogen and carbon dioxide. Results demonstrate significantly higher sorption capacity for carbon dioxide (2.5–6 times) compared to hydrogen due to stronger gas-kerogen interactions. Consequently, carbon dioxide exhibits markedly lower diffusivity (20–52 times) compared to hydrogen. Moreover, the study reveals distinct tortuosity values, within the same structures, for hydrogen (ranging from 1.1 to 2.29) and carbon dioxide (ranging from 2.92 to 4.15), emphasizing the influence of gas-specific properties on transport behavior within organic-rich formations. These findings contribute to a more accurate representation of gas transport processes in these complex environments and provide valuable insights for optimizing geo-storage strategies.</div></div>","PeriodicalId":100568,"journal":{"name":"Gas Science and Engineering","volume":"137 ","pages":"Article 205582"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gas Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949908925000469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the crucial challenge of precisely modeling how hydrogen and carbon dioxide move and spread within the tight confinement of organic-rich rock formations. This is especially important for understanding potential gas distribution and ensuring the secure containment of these gases during geo-storage operations, where injected gases like hydrogen or carbon dioxide could migrate through the complex network of organic microstructures in source rocks. By combining Grand Canonical Monte Carlo simulations for sorption analysis and molecular dynamics for diffusion assessment, this research offers a comprehensive approach to understanding gas behavior in these complex systems. The study involved constructing kerogen models with varying microporosity (13.7%–32.9%) to delineate the impact of pore structure on gas diffusivity and establish tortuosity-porosity relationships for hydrogen and carbon dioxide. Results demonstrate significantly higher sorption capacity for carbon dioxide (2.5–6 times) compared to hydrogen due to stronger gas-kerogen interactions. Consequently, carbon dioxide exhibits markedly lower diffusivity (20–52 times) compared to hydrogen. Moreover, the study reveals distinct tortuosity values, within the same structures, for hydrogen (ranging from 1.1 to 2.29) and carbon dioxide (ranging from 2.92 to 4.15), emphasizing the influence of gas-specific properties on transport behavior within organic-rich formations. These findings contribute to a more accurate representation of gas transport processes in these complex environments and provide valuable insights for optimizing geo-storage strategies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.20
自引率
0.00%
发文量
0
期刊最新文献
Modelling tortuous pathways of H2 and CO2 in organic microstructures for improved gas migration prediction Comparison of conventional and simplified heterogeneous modeling frameworks for simulation of sulfur poisoning in methane reforming catalyst Editorial Board Optimizing hydrogen generation from petroleum reservoirs: A dual-perspective approach for enhancing efficiency and cleaner production Sensitivity analysis of multi-factors on the mechanical properties of hydrate-bearing sediments at different axial strain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1