Jianqing Wang , Yu Wang , Huihui Zhou , Guopeng Yu , Huan Xu , Dajun Gao , Minglun Li , Yuzhuo Wang , Bin Xu
{"title":"Identification of the specific characteristics of neuroendocrine prostate cancer: Immune status, hub genes and treatment","authors":"Jianqing Wang , Yu Wang , Huihui Zhou , Guopeng Yu , Huan Xu , Dajun Gao , Minglun Li , Yuzhuo Wang , Bin Xu","doi":"10.1016/j.tranon.2025.102320","DOIUrl":null,"url":null,"abstract":"<div><div>Castration-resistant prostate cancer (CRPC) marks the advanced phase of prostate malignancy, manifested through two principal subtypes: castration-resistant adenocarcinoma (CRPC-adeno) and neuroendocrine prostate cancer (NEPC). This study aims to identify unique central regulatory genes, assess the immunological landscape, and explore potential therapeutic strategies specifically tailored to NEPC. We discovered 1444 differentially expressed genes (DEGs) distinguishing between the two cancer types and identified 12 critical hub genes. Notably, CHST1, MPPED2, and RIPPLY3 emerged as closely associated with the immune cell infiltration pattern, establishing them as top candidates. Prognostic analysis highlighted the potential critical roles of CHST1 and MPPED2 in prostate cancer development, findings corroborated through in vitro and in vivo assays. Moreover, we validated the functions and expression levels of CHST1, MPPED2, and RIPPLY3 in NEPC using cell lines, animal models and human tissues. In the final step, we found that imatinib might be the drug specific to NEPC, which was further confirmed by in vitro cell assay. Our results revealed the clinical characteristics, molecular features, immune cell infiltration pattern in CRPC-adeno and NEPC, and identified and confirmed CHST1, MPPED2, and RIPPLY3 as the critical genes in the development in prostate cancer and NEPC. We also predicted and validated imatinib as the potential specific drugs to NEPC.</div></div>","PeriodicalId":48975,"journal":{"name":"Translational Oncology","volume":"54 ","pages":"Article 102320"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1936523325000518","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Castration-resistant prostate cancer (CRPC) marks the advanced phase of prostate malignancy, manifested through two principal subtypes: castration-resistant adenocarcinoma (CRPC-adeno) and neuroendocrine prostate cancer (NEPC). This study aims to identify unique central regulatory genes, assess the immunological landscape, and explore potential therapeutic strategies specifically tailored to NEPC. We discovered 1444 differentially expressed genes (DEGs) distinguishing between the two cancer types and identified 12 critical hub genes. Notably, CHST1, MPPED2, and RIPPLY3 emerged as closely associated with the immune cell infiltration pattern, establishing them as top candidates. Prognostic analysis highlighted the potential critical roles of CHST1 and MPPED2 in prostate cancer development, findings corroborated through in vitro and in vivo assays. Moreover, we validated the functions and expression levels of CHST1, MPPED2, and RIPPLY3 in NEPC using cell lines, animal models and human tissues. In the final step, we found that imatinib might be the drug specific to NEPC, which was further confirmed by in vitro cell assay. Our results revealed the clinical characteristics, molecular features, immune cell infiltration pattern in CRPC-adeno and NEPC, and identified and confirmed CHST1, MPPED2, and RIPPLY3 as the critical genes in the development in prostate cancer and NEPC. We also predicted and validated imatinib as the potential specific drugs to NEPC.
期刊介绍:
Translational Oncology publishes the results of novel research investigations which bridge the laboratory and clinical settings including risk assessment, cellular and molecular characterization, prevention, detection, diagnosis and treatment of human cancers with the overall goal of improving the clinical care of oncology patients. Translational Oncology will publish laboratory studies of novel therapeutic interventions as well as clinical trials which evaluate new treatment paradigms for cancer. Peer reviewed manuscript types include Original Reports, Reviews and Editorials.