Predictive modeling with linear machine learning can estimate glioblastoma survival in months based solely on MGMT-methylation status, age and sex

IF 1.9 3区 医学 Q3 CLINICAL NEUROLOGY Acta Neurochirurgica Pub Date : 2025-02-24 DOI:10.1007/s00701-025-06441-7
Emanuele Maragno, Sarah Ricchizzi, Nils Ralf Winter, Sönke Josua Hellwig, Walter Stummer, Tim Hahn, Markus Holling
{"title":"Predictive modeling with linear machine learning can estimate glioblastoma survival in months based solely on MGMT-methylation status, age and sex","authors":"Emanuele Maragno,&nbsp;Sarah Ricchizzi,&nbsp;Nils Ralf Winter,&nbsp;Sönke Josua Hellwig,&nbsp;Walter Stummer,&nbsp;Tim Hahn,&nbsp;Markus Holling","doi":"10.1007/s00701-025-06441-7","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>Machine Learning (ML) has become an essential tool for analyzing biomedical data, facilitating the prediction of treatment outcomes and patient survival. However, the effectiveness of ML models heavily relies on both the choice of algorithms and the quality of the input data. In this study, we aimed to develop a novel predictive model to estimate individual survival for patients diagnosed with glioblastoma (GBM), focusing on key variables such as O6-Methylguanine-DNA Methyltransferase (MGMT) methylation status, age, and sex.</p><h3>Methods</h3><p>To identify the optimal approach, we utilized retrospective data from 218 patients treated at our brain tumor center. The performance of the ML models was evaluated within repeated tenfold regression. The pipeline comprised five regression estimators, including both linear and non-linear algorithms. Permutation feature importance highlighted the feature with the most significant impact on the model. Statistical significance was assessed using a permutation test procedure.</p><h3>Results</h3><p>The best machine learning algorithm achieved a mean absolute error (MAE) of 12.65 (SD = ± 2.18) and an explained variance (EV) of 7% (SD = ± 1.8%) with <i>p</i> &lt; 0.001. Linear algorithms led to more accurate predictions than non-linear estimators. Feature importance testing indicated that age and positive MGMT-methylation influenced the predictions the most.</p><h3>Conclusion</h3><p>In summary, here we provide a novel approach allowing to predict GBM patient’s survival in months solely based on key parameters such as age, sex and MGMT-methylation status and underscores MGMT-methylation status as key prognostic factor for GBM patients survival.</p></div>","PeriodicalId":7370,"journal":{"name":"Acta Neurochirurgica","volume":"167 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00701-025-06441-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Neurochirurgica","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00701-025-06441-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

Machine Learning (ML) has become an essential tool for analyzing biomedical data, facilitating the prediction of treatment outcomes and patient survival. However, the effectiveness of ML models heavily relies on both the choice of algorithms and the quality of the input data. In this study, we aimed to develop a novel predictive model to estimate individual survival for patients diagnosed with glioblastoma (GBM), focusing on key variables such as O6-Methylguanine-DNA Methyltransferase (MGMT) methylation status, age, and sex.

Methods

To identify the optimal approach, we utilized retrospective data from 218 patients treated at our brain tumor center. The performance of the ML models was evaluated within repeated tenfold regression. The pipeline comprised five regression estimators, including both linear and non-linear algorithms. Permutation feature importance highlighted the feature with the most significant impact on the model. Statistical significance was assessed using a permutation test procedure.

Results

The best machine learning algorithm achieved a mean absolute error (MAE) of 12.65 (SD = ± 2.18) and an explained variance (EV) of 7% (SD = ± 1.8%) with p < 0.001. Linear algorithms led to more accurate predictions than non-linear estimators. Feature importance testing indicated that age and positive MGMT-methylation influenced the predictions the most.

Conclusion

In summary, here we provide a novel approach allowing to predict GBM patient’s survival in months solely based on key parameters such as age, sex and MGMT-methylation status and underscores MGMT-methylation status as key prognostic factor for GBM patients survival.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Neurochirurgica
Acta Neurochirurgica 医学-临床神经学
CiteScore
4.40
自引率
4.20%
发文量
342
审稿时长
1 months
期刊介绍: The journal "Acta Neurochirurgica" publishes only original papers useful both to research and clinical work. Papers should deal with clinical neurosurgery - diagnosis and diagnostic techniques, operative surgery and results, postoperative treatment - or with research work in neuroscience if the underlying questions or the results are of neurosurgical interest. Reports on congresses are given in brief accounts. As official organ of the European Association of Neurosurgical Societies the journal publishes all announcements of the E.A.N.S. and reports on the activities of its member societies. Only contributions written in English will be accepted.
期刊最新文献
Comparison of early versus late rescue stenting after failed thrombectomy for intracranial atherosclerosis-related large vessel occlusion A national study of burnout, psychosocial work environment, and moral distress among neurosurgical doctors in Denmark Predictive modeling with linear machine learning can estimate glioblastoma survival in months based solely on MGMT-methylation status, age and sex Transarterial embolization of anterior cranial fossa dural arteriovenous fistulas as a first-line approach: A retrospective single-center study How I do it: surgical techniques for vagus nerve stimulation in pediatric drug-resistant epilepsy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1