{"title":"Magnetic-resonance-induced non-linear current response in magnetic Weyl semimetals","authors":"Ruobing Mei, Chao-Xing Liu","doi":"10.1007/s43673-025-00145-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we propose a geometric non-linear current response induced by magnetic resonance in magnetic Weyl semimetals. This phenomenon is in analog to the quantized circular photogalvanic effect (de Juan et al., Nat. Commun. 8:15995, 2017) previously proposed for Weyl semimetal phases of chiral crystals. However, the non-linear current response in our case can occur in magnetic Weyl semimetals where time-reversal symmetry, instead of inversion symmetry, is broken. The occurrence of this phenomenon relies on the special coupling between Weyl electrons and magnetic fluctuations induced by magnetic resonance. To further support our analytical solution, we perform numerical studies on a model Hamiltonian describing the Weyl semimetal phase in a topological insulator system with ferromagnetism.</p></div>","PeriodicalId":100007,"journal":{"name":"AAPPS Bulletin","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43673-025-00145-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPPS Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43673-025-00145-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we propose a geometric non-linear current response induced by magnetic resonance in magnetic Weyl semimetals. This phenomenon is in analog to the quantized circular photogalvanic effect (de Juan et al., Nat. Commun. 8:15995, 2017) previously proposed for Weyl semimetal phases of chiral crystals. However, the non-linear current response in our case can occur in magnetic Weyl semimetals where time-reversal symmetry, instead of inversion symmetry, is broken. The occurrence of this phenomenon relies on the special coupling between Weyl electrons and magnetic fluctuations induced by magnetic resonance. To further support our analytical solution, we perform numerical studies on a model Hamiltonian describing the Weyl semimetal phase in a topological insulator system with ferromagnetism.