The leeb (Equotip) hardness test for rock materials: An overview, assessments on the factors influencing test results, and prediction models based on a large database

IF 3.7 2区 工程技术 Q3 ENGINEERING, ENVIRONMENTAL Bulletin of Engineering Geology and the Environment Pub Date : 2025-02-25 DOI:10.1007/s10064-025-04170-w
Reşat Ulusay, Hakan Ersoy, Muhammet Oğuz Sünnetci, Murat Karahan
{"title":"The leeb (Equotip) hardness test for rock materials: An overview, assessments on the factors influencing test results, and prediction models based on a large database","authors":"Reşat Ulusay,&nbsp;Hakan Ersoy,&nbsp;Muhammet Oğuz Sünnetci,&nbsp;Murat Karahan","doi":"10.1007/s10064-025-04170-w","DOIUrl":null,"url":null,"abstract":"<div><p>This study aims to assess several factors affecting Leeb hardness (LH) test results for rock materials. Regression models for predicting some strength and deformability properties from <i>L</i><sub><i>D</i></sub> values were proposed and compared based on a larger database from a comprehensive experimental program conducted and those compiled from the literature. The results indicate that Single Impact Method (SIM) is the most suitable method to obtain more reliable <i>L</i><sub><i>D</i></sub> values when compared to Repeated Impact Method (RIM). In addition, RIM causes the formation of pits and bulges on the sample surface. 15 single impacts are sufficient to determine <i>L</i><sub><i>D</i></sub> value that statistically represents optimal number of impacts to be applied. The test should be performed on samples with a length of (L) ≥ 50 mm (L/D ≥ 1) and the impacts should be applied by leaving a minimum distance at least equal to the diameter of the tester supporting ring from sample edge.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"84 3","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10064-025-04170-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-025-04170-w","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to assess several factors affecting Leeb hardness (LH) test results for rock materials. Regression models for predicting some strength and deformability properties from LD values were proposed and compared based on a larger database from a comprehensive experimental program conducted and those compiled from the literature. The results indicate that Single Impact Method (SIM) is the most suitable method to obtain more reliable LD values when compared to Repeated Impact Method (RIM). In addition, RIM causes the formation of pits and bulges on the sample surface. 15 single impacts are sufficient to determine LD value that statistically represents optimal number of impacts to be applied. The test should be performed on samples with a length of (L) ≥ 50 mm (L/D ≥ 1) and the impacts should be applied by leaving a minimum distance at least equal to the diameter of the tester supporting ring from sample edge.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Bulletin of Engineering Geology and the Environment
Bulletin of Engineering Geology and the Environment 工程技术-地球科学综合
CiteScore
7.10
自引率
11.90%
发文量
445
审稿时长
4.1 months
期刊介绍: Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces: • the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations; • the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change; • the assessment of the mechanical and hydrological behaviour of soil and rock masses; • the prediction of changes to the above properties with time; • the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.
期刊最新文献
Experimental investigation into the permeability evolution of rough fractures in limestone under complex service conditions Stability of Lignosulphonate-modified expansive soil under wet-dry cycles: utilizing industrial waste for sustainable soil improvement Experimental study on the control mechanism of 2G-NPR anchor cables in the anti-dip slope instability model Degradation of the mechanical properties of root–soil composites under moisture influence Experimental study and finite element simulations for LN2 fracturing in coal from Karaganda Basin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1