Droplets Impacting on Superheated Surfaces with Asymmetric Re-Entrant Microgrooves

IF 9.1 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Small Methods Pub Date : 2025-02-23 DOI:10.1002/smtd.202500008
Ting-Yu Hsu, Hung-Chih Chen, Chung-Te Huang, Chuanhua Duan, Ming-Chang Lu
{"title":"Droplets Impacting on Superheated Surfaces with Asymmetric Re-Entrant Microgrooves","authors":"Ting-Yu Hsu,&nbsp;Hung-Chih Chen,&nbsp;Chung-Te Huang,&nbsp;Chuanhua Duan,&nbsp;Ming-Chang Lu","doi":"10.1002/smtd.202500008","DOIUrl":null,"url":null,"abstract":"<p>Impacting droplets on hot solid surfaces is a widely used method for thermal management across various applications. Efficient heat transfer relies on the rapid detachment and directional shedding of these impacting droplets. Additionally, suppressing the Leidenfrost effect is crucial. However, there are currently no engineered surfaces that can simultaneously achieve reduced contact time, directional droplet shedding, and Leidenfrost suppression at high temperatures. This work introduces a novel type of surface with asymmetric re-entrant microgrooves (ARG surfaces) to address this challenge. ARG surfaces demonstrate Leidenfrost points (LFPs) as high as 725 °C and contact times lower than the theoretical limit at temperatures ranging from 350 to 650 °C. Additionally, they exhibit superior droplet centroid velocities and non-dimensional displacement factors. A theoretical model is also developed to predict the LFPs of these surfaces. Furthermore, temperature profiles of plain Si and ARG surfaces upon droplet impact confirm the superior cooling performance of ARG surfaces compared to plain Si. These results highlight the potential of ARG surfaces for achieving efficient cooling in diverse high-temperature applications.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":"9 8","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smtd.202500008","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Impacting droplets on hot solid surfaces is a widely used method for thermal management across various applications. Efficient heat transfer relies on the rapid detachment and directional shedding of these impacting droplets. Additionally, suppressing the Leidenfrost effect is crucial. However, there are currently no engineered surfaces that can simultaneously achieve reduced contact time, directional droplet shedding, and Leidenfrost suppression at high temperatures. This work introduces a novel type of surface with asymmetric re-entrant microgrooves (ARG surfaces) to address this challenge. ARG surfaces demonstrate Leidenfrost points (LFPs) as high as 725 °C and contact times lower than the theoretical limit at temperatures ranging from 350 to 650 °C. Additionally, they exhibit superior droplet centroid velocities and non-dimensional displacement factors. A theoretical model is also developed to predict the LFPs of these surfaces. Furthermore, temperature profiles of plain Si and ARG surfaces upon droplet impact confirm the superior cooling performance of ARG surfaces compared to plain Si. These results highlight the potential of ARG surfaces for achieving efficient cooling in diverse high-temperature applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有非对称可入微槽的液滴撞击过热表面。
在热固体表面上撞击液滴是一种广泛应用于各种应用的热管理方法。有效的传热依赖于这些冲击液滴的快速分离和定向脱落。此外,抑制莱顿弗罗斯特效应至关重要。然而,目前还没有一种工程表面可以同时实现减少接触时间、定向脱落和高温下的莱顿弗罗斯特抑制。这项工作引入了一种具有非对称可入微槽(ARG)的新型表面来解决这一挑战。ARG表面的莱顿弗罗斯特点(LFPs)高达725°C,在350至650°C的温度范围内,接触时间低于理论极限。此外,它们还表现出优越的液滴质心速度和无因次位移因子。还建立了一个理论模型来预测这些表面的lfp。此外,在液滴撞击时,普通Si和ARG表面的温度曲线证实了ARG表面比普通Si具有更好的冷却性能。这些结果突出了ARG表面在各种高温应用中实现高效冷却的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
期刊最新文献
Efficient Flexible CZTSSe Solar Cells with Suppressed Back Interfacial Recombination by In Situ Pre-Selenization of Mo Foil. Standardization and Machine Learning Prediction of Tafel Slope of Pt-Based Nanocatalysts for High-Performance HER Catalyst Development. Liquid Supplied One Droplet Continuous 3D Printing. Visualizing Electrochemical Reactions in Rechargeable Battery Anodes via In Situ Transmission Electron Microscopy Study. 986/1540 nm Quantum Cutting-Based Perovskite Near-Infrared Light-Emitting Diodes: Overcoming Bottlenecks via a Quantum Dot-Matrix Hybrid Strategy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1