Regulating Precursor Viscosity with Inert Solvent Additives for Efficient Blade-Coated Perovskite Solar Cells.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Small Methods Pub Date : 2025-02-24 DOI:10.1002/smtd.202500129
Jingjing Wu, Zhaokai Liu, Yongrui Yang, Kun Zhang, Yumeng Wang, Lutong Guo, Mengmeng Guo, Yang Wang, Yali Qiao, Yanlin Song
{"title":"Regulating Precursor Viscosity with Inert Solvent Additives for Efficient Blade-Coated Perovskite Solar Cells.","authors":"Jingjing Wu, Zhaokai Liu, Yongrui Yang, Kun Zhang, Yumeng Wang, Lutong Guo, Mengmeng Guo, Yang Wang, Yali Qiao, Yanlin Song","doi":"10.1002/smtd.202500129","DOIUrl":null,"url":null,"abstract":"<p><p>Metal halide perovskite solar cells (PSCs) are emerging as promising candidates for next-generation photovoltaics aimed at green energy production. However, during solution-processed film deposition, the distinct rheological behaviors of blade coating, compared to spin coating, result in less controlled crystallization, leading to inferior film quality and limiting the power conversion efficiency (PCE) of blade-coated photovoltaics. In this work, ethylene glycol (EG) is introduced as an inert co-solvent in perovskite precursor solutions to achieve high-quality perovskite films via blade coating. The high viscosity of EG facilitates the deposition of thick perovskite films ranging from 400 to 2000 nm, while its low vapor pressure effectively suppresses premature nucleation before vacuum flashing, leading to films with enhanced morphology. As a result, the blade-coated PSCs achieve an impressive champion PCE of 24.10% and retain 89% of their initial efficiency after 600 h of continuous operation.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2500129"},"PeriodicalIF":10.7000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202500129","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Metal halide perovskite solar cells (PSCs) are emerging as promising candidates for next-generation photovoltaics aimed at green energy production. However, during solution-processed film deposition, the distinct rheological behaviors of blade coating, compared to spin coating, result in less controlled crystallization, leading to inferior film quality and limiting the power conversion efficiency (PCE) of blade-coated photovoltaics. In this work, ethylene glycol (EG) is introduced as an inert co-solvent in perovskite precursor solutions to achieve high-quality perovskite films via blade coating. The high viscosity of EG facilitates the deposition of thick perovskite films ranging from 400 to 2000 nm, while its low vapor pressure effectively suppresses premature nucleation before vacuum flashing, leading to films with enhanced morphology. As a result, the blade-coated PSCs achieve an impressive champion PCE of 24.10% and retain 89% of their initial efficiency after 600 h of continuous operation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
期刊最新文献
Magic Defect Site for Modulating Electron-Correlated Properties in Monolayer T-NbSe2. 2D MXenes-Based Gas Sensors: Progress, Applications, and Challenges. Achieving Precision Phototherapy from Start to Finish: Integrating Endosomal Escape, Respiration Inhibition, and ROS Release in a Single Upconversion Nanoparticle. Surface Organic Nanostructures Mediated by Extrinsic Components: from Assembly to Reaction. Metal Halide Perovskite Single-Crystal Thin Films: From Films Growth to Light-Emitting Application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1