Platelet C3G protects from liver fibrosis, while enhancing tumor growth through regulation of the immune response.

IF 5.6 2区 医学 Q1 ONCOLOGY The Journal of Pathology Pub Date : 2025-02-24 DOI:10.1002/path.6403
Cristina Baquero, Minerva Iniesta-González, Nerea Palao, Cristina Fernández-Infante, Mateo Cueto-Remacha, Jaime Mancebo, Samuel de la Cámara-Fuentes, María Rodrigo-Faus, M Pilar Valdecantos, Angela M Valverde, Celia Sequera, Sara Manzano, Ángel M Cuesta, Alvaro Gutierrez-Uzquiza, Paloma Bragado, Carmen Guerrero, Almudena Porras
{"title":"Platelet C3G protects from liver fibrosis, while enhancing tumor growth through regulation of the immune response.","authors":"Cristina Baquero, Minerva Iniesta-González, Nerea Palao, Cristina Fernández-Infante, Mateo Cueto-Remacha, Jaime Mancebo, Samuel de la Cámara-Fuentes, María Rodrigo-Faus, M Pilar Valdecantos, Angela M Valverde, Celia Sequera, Sara Manzano, Ángel M Cuesta, Alvaro Gutierrez-Uzquiza, Paloma Bragado, Carmen Guerrero, Almudena Porras","doi":"10.1002/path.6403","DOIUrl":null,"url":null,"abstract":"<p><p>Primary liver cancer usually occurs in the context of chronic liver disease (CLD), in association with fibrosis. Platelets have emerged as important regulators of CLD and liver cancer, although their precise function and mechanism of action need to be clarified. C3G (RapGEF1) regulates platelet activation, adhesion, and secretion. Here we evaluate the role of platelet C3G in chemically induced fibrosis and liver cancer associated with fibrosis using genetically modified mouse models. We found that while overexpression of full-length C3G in platelets decreased liver fibrosis induced by chronic treatment with CCl<sub>4</sub>, overexpressed C3G lacking the catalytic domain did not, although in both cases platelet recruitment to the liver was similar. In addition, C3G deletion in platelets (PF4-C3GKO mouse model) increased CCl<sub>4</sub>-induced liver damage and hepatic fibrosis, reducing liver platelets and macrophages. Moreover, early liver immune response to CCl<sub>4</sub> was altered in PF4-C3GKO mice, with a remarkable lower activation of macrophages and increased monocyte-derived macrophages compared to WT mice. On the other hand, in response to DEN+CCl<sub>4</sub>, PF4-C3G WT mice exhibited more and larger liver tumors than PF4-C3GKO mice, accompanied by the presence of more platelets, despite having less fibrosis in previous steps. Liver immune cell populations were also differentially regulated in PF4-C3GKO mice, highlighting the higher number of macrophages, likely with a pro-inflammatory phenotype, present in the liver in response to chronic DEN+CCl<sub>4</sub> treatment. Proteins upregulated or downregulated in platelet-rich plasma from PF4-C3GKO compared to WT mice might regulate the immune response and tumor development. In this regard, enrichment analyses using proteomic data showed changes in several proteins involved in platelet activation and immune response pathways. Additionally, the higher secretion of CD40L by PF4-C3GKO platelets could contribute to their antitumor effect. Therefore, platelet C3G presents antifibrotic and protumor effects in the liver, likely mediated by changes in the immune response. © 2025 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.</p>","PeriodicalId":232,"journal":{"name":"The Journal of Pathology","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/path.6403","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Primary liver cancer usually occurs in the context of chronic liver disease (CLD), in association with fibrosis. Platelets have emerged as important regulators of CLD and liver cancer, although their precise function and mechanism of action need to be clarified. C3G (RapGEF1) regulates platelet activation, adhesion, and secretion. Here we evaluate the role of platelet C3G in chemically induced fibrosis and liver cancer associated with fibrosis using genetically modified mouse models. We found that while overexpression of full-length C3G in platelets decreased liver fibrosis induced by chronic treatment with CCl4, overexpressed C3G lacking the catalytic domain did not, although in both cases platelet recruitment to the liver was similar. In addition, C3G deletion in platelets (PF4-C3GKO mouse model) increased CCl4-induced liver damage and hepatic fibrosis, reducing liver platelets and macrophages. Moreover, early liver immune response to CCl4 was altered in PF4-C3GKO mice, with a remarkable lower activation of macrophages and increased monocyte-derived macrophages compared to WT mice. On the other hand, in response to DEN+CCl4, PF4-C3G WT mice exhibited more and larger liver tumors than PF4-C3GKO mice, accompanied by the presence of more platelets, despite having less fibrosis in previous steps. Liver immune cell populations were also differentially regulated in PF4-C3GKO mice, highlighting the higher number of macrophages, likely with a pro-inflammatory phenotype, present in the liver in response to chronic DEN+CCl4 treatment. Proteins upregulated or downregulated in platelet-rich plasma from PF4-C3GKO compared to WT mice might regulate the immune response and tumor development. In this regard, enrichment analyses using proteomic data showed changes in several proteins involved in platelet activation and immune response pathways. Additionally, the higher secretion of CD40L by PF4-C3GKO platelets could contribute to their antitumor effect. Therefore, platelet C3G presents antifibrotic and protumor effects in the liver, likely mediated by changes in the immune response. © 2025 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Pathology
The Journal of Pathology 医学-病理学
CiteScore
14.10
自引率
1.40%
发文量
144
审稿时长
3-8 weeks
期刊介绍: The Journal of Pathology aims to serve as a translational bridge between basic biomedical science and clinical medicine with particular emphasis on, but not restricted to, tissue based studies. The main interests of the Journal lie in publishing studies that further our understanding the pathophysiological and pathogenetic mechanisms of human disease. The Journal of Pathology welcomes investigative studies on human tissues, in vitro and in vivo experimental studies, and investigations based on animal models with a clear relevance to human disease, including transgenic systems. As well as original research papers, the Journal seeks to provide rapid publication in a variety of other formats, including editorials, review articles, commentaries and perspectives and other features, both contributed and solicited.
期刊最新文献
Should we worry about high-grade pancreatic neuroendocrine tumor progression and alkylating agents?. Tumor immune microenvironment alterations associated with progression in human intraductal papillary mucinous neoplasms. Platelet C3G protects from liver fibrosis, while enhancing tumor growth through regulation of the immune response. PI3 expression predicts recurrence after chemotherapy with DNA-damaging drugs in gastric cancer. Spatial profiling of ANO7 in prostate tissue: links to AR-signalling-associated lipid metabolism and inflammation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1