Perfluoroalkyl Acids (PFAAs) and their precursors in sediments and adjacent riparian soils from the Three Gorges Reservoir, China: Contamination characteristics, source apportionment and ecological risks.
{"title":"Perfluoroalkyl Acids (PFAAs) and their precursors in sediments and adjacent riparian soils from the Three Gorges Reservoir, China: Contamination characteristics, source apportionment and ecological risks.","authors":"Yongxia Hu, Hui Chen, Ying Chen, Yunlong Wang, Yixia Luo, Liubo Sang, Tao Jin, Shengjun Wu","doi":"10.1016/j.envres.2025.121202","DOIUrl":null,"url":null,"abstract":"<p><p>Information on the occurrence and spatial distribution of perfluoroalkyl acids (PFAAs) and their precursors in sediments and adjacent riparian soils of Three Gorges Reservoir (TGR), which is one of the largest reservoirs in the world, is still limited. In this study, The total concentrations of these per- and polyfluoroalkyl substances (PFASs) ranged from 2220 to 19,300 pg/g in sediments and 298 to 9540 pg/g in soils. PFOA was the dominant PFAS in sediments and soils, accounting for 23.4% and 30.7% of the total median cocentrations of PFASs, respectively. PFAA precursors, such as 4:2 fluorotelomer sulfonate (4:2 FTS), 6:2 fluorotelomer sulfonate (6:2 FTS), and perfluorooctane sulfonamide (FOSA), were widely detected in sediments and soils. The distribution of PFASs exhibited distinct spatial variations and was more influenced by anthropogenic activities. Positive matrix factorization (PMF) identified fire-fighting foams (AFFF) and legacy fluoropolymer industry/textile treatment were the dominant sources in sediments (31.5%) and soils (30.8%), respectively. Finally, the ecological risk assessment showed that PFOS exhibited low to medium risks. Our findings indicate that the contamination of PFAA precursors must be considered when developing management measures to protect the TGR region.</p>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":" ","pages":"121202"},"PeriodicalIF":7.7000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envres.2025.121202","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Information on the occurrence and spatial distribution of perfluoroalkyl acids (PFAAs) and their precursors in sediments and adjacent riparian soils of Three Gorges Reservoir (TGR), which is one of the largest reservoirs in the world, is still limited. In this study, The total concentrations of these per- and polyfluoroalkyl substances (PFASs) ranged from 2220 to 19,300 pg/g in sediments and 298 to 9540 pg/g in soils. PFOA was the dominant PFAS in sediments and soils, accounting for 23.4% and 30.7% of the total median cocentrations of PFASs, respectively. PFAA precursors, such as 4:2 fluorotelomer sulfonate (4:2 FTS), 6:2 fluorotelomer sulfonate (6:2 FTS), and perfluorooctane sulfonamide (FOSA), were widely detected in sediments and soils. The distribution of PFASs exhibited distinct spatial variations and was more influenced by anthropogenic activities. Positive matrix factorization (PMF) identified fire-fighting foams (AFFF) and legacy fluoropolymer industry/textile treatment were the dominant sources in sediments (31.5%) and soils (30.8%), respectively. Finally, the ecological risk assessment showed that PFOS exhibited low to medium risks. Our findings indicate that the contamination of PFAA precursors must be considered when developing management measures to protect the TGR region.
期刊介绍:
The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.