Dynamic interactions between discrete and rhythmic bimanual movement.

IF 1.7 4区 医学 Q4 NEUROSCIENCES Experimental Brain Research Pub Date : 2025-02-24 DOI:10.1007/s00221-025-07028-5
Remington Angel, Se-Woong Park
{"title":"Dynamic interactions between discrete and rhythmic bimanual movement.","authors":"Remington Angel, Se-Woong Park","doi":"10.1007/s00221-025-07028-5","DOIUrl":null,"url":null,"abstract":"<p><p>Many motor tasks in everyday life, such as driving and cooking, involve a combination of discrete and rhythmic movements. While an increasing number of studies have identified discrete and rhythmic movements as fundamental components in complex motor control, the dynamic interactions between them remain elusive. This study aimed to quantify changes in kinematics when ongoing rhythmic movement of the right arm is perturbed by either rhythmic (RI) or discrete initiation (DI) of the left arm. Fourteen young adults (12 right-handed, 2 ambidextrous) performed bimanual forearm rotations on a horizontal plane under two conditions, i.e., RI and DI. We analyzed the change of instantaneous phase progression. Results showed that the perturbed magnitude and direction in the ongoing right arm were dependent on the relative phase between the two arms at the initiation of the left arm in both DI and RI. When observing the phase progression over the duration of the movement of discrete reaching, perturbations in the DI condition were comparable to those in the RI condition. However, over an extended duration beyond the discrete movement time, perturbations in the DI condition were significantly larger than those in the RI condition. The results suggest that, while the bimanual interaction appears consistent across the two types of movement, termination rather than initiation of discrete movements may engage distinct motor control processes compared to rhythmic movements.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":"243 3","pages":"76"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Brain Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00221-025-07028-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Many motor tasks in everyday life, such as driving and cooking, involve a combination of discrete and rhythmic movements. While an increasing number of studies have identified discrete and rhythmic movements as fundamental components in complex motor control, the dynamic interactions between them remain elusive. This study aimed to quantify changes in kinematics when ongoing rhythmic movement of the right arm is perturbed by either rhythmic (RI) or discrete initiation (DI) of the left arm. Fourteen young adults (12 right-handed, 2 ambidextrous) performed bimanual forearm rotations on a horizontal plane under two conditions, i.e., RI and DI. We analyzed the change of instantaneous phase progression. Results showed that the perturbed magnitude and direction in the ongoing right arm were dependent on the relative phase between the two arms at the initiation of the left arm in both DI and RI. When observing the phase progression over the duration of the movement of discrete reaching, perturbations in the DI condition were comparable to those in the RI condition. However, over an extended duration beyond the discrete movement time, perturbations in the DI condition were significantly larger than those in the RI condition. The results suggest that, while the bimanual interaction appears consistent across the two types of movement, termination rather than initiation of discrete movements may engage distinct motor control processes compared to rhythmic movements.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.60
自引率
5.00%
发文量
228
审稿时长
1 months
期刊介绍: Founded in 1966, Experimental Brain Research publishes original contributions on many aspects of experimental research of the central and peripheral nervous system. The focus is on molecular, physiology, behavior, neurochemistry, developmental, cellular and molecular neurobiology, and experimental pathology relevant to general problems of cerebral function. The journal publishes original papers, reviews, and mini-reviews.
期刊最新文献
Dynamic interactions between discrete and rhythmic bimanual movement. Recreational older ballet dancers fall less with more effective reactive balance control than non-dancers after a slip during gait. Computational model for control of hand movement in Parkinson's disease using deep brain stimulation. Patterns of brain activity in choice or instructed go and no-go tasks. Correlates of gait speed changes during uneven terrain walking in older adults: differential roles of cognitive and sensorimotor function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1