Network pharmacology unveils the intricate molecular landscape of Chrysin in breast cancer therapeutics.

IF 2.8 4区 医学 Q3 ENDOCRINOLOGY & METABOLISM Discover. Oncology Pub Date : 2025-02-23 DOI:10.1007/s12672-025-01951-3
Jianping Ma, PinYi Liu, Lili Pan
{"title":"Network pharmacology unveils the intricate molecular landscape of Chrysin in breast cancer therapeutics.","authors":"Jianping Ma, PinYi Liu, Lili Pan","doi":"10.1007/s12672-025-01951-3","DOIUrl":null,"url":null,"abstract":"<p><p>Chrysin is one of the natural flavonoid compounds Sourced from various plant source, mainly in propolis and honey, demonstrates effective Cancer-suppressing properties, particularly in Breast cancer (BC). However, the specific molecular mechanisms underlying its efficacy in breast cancer treatment have remained elusive. This study employed network pharmacology combined with a molecular docking approach to uncover the intricate details of Chrysin's impact on breast cancer. Utilizing databases such as GeneCards, and disgenet, Pharmmapper, ctd database, Chrysin and potential breast cancer targets were meticulously curated. Through a strategic process of mapping and screening, core targets essential for Chrysin's efficacy in breast cancer treatment were identified. Further refinement through Venn diagram analysis, considering 1350 breast cancer target genes and 433 Chrysin-related targets, identified 140 intersection targets. Subsequent construction of protein-protein interaction networks of 140 intersecting using the STRING and Cytoscape software highlighted these ten targets as core candidates. Functional annotation and pathway analysis, performed using the ShinyGO database, unveiled that the key targets were significantly associated with the Prostate cancer pathways and IL17 signaling pathways. Molecular docking results underscored Chrysin's effective binding to these ten key targets, forming stable protein-ligand complexes. Molecular docking analyses were then conducted to evaluate the impact of Chrysin in the key targets, revealing TP53, JUN, HIF1A, ALB, CASP3, STAT3, BCL2, TNF, AKT1, and IL6 as pivotal players. In summary, this investigation provides valuable revelations into the essential targets and molecular processes through which Chrysin exerts its anti-breast cancer effects. These findings not only enhance our understanding of Chrysin's pharmacological actions in breast cancer but also lay a theoretical groundwork for future investigations into the therapeutic mechanisms of Chrysin in this context.</p>","PeriodicalId":11148,"journal":{"name":"Discover. Oncology","volume":"16 1","pages":"228"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11847756/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover. Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12672-025-01951-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Chrysin is one of the natural flavonoid compounds Sourced from various plant source, mainly in propolis and honey, demonstrates effective Cancer-suppressing properties, particularly in Breast cancer (BC). However, the specific molecular mechanisms underlying its efficacy in breast cancer treatment have remained elusive. This study employed network pharmacology combined with a molecular docking approach to uncover the intricate details of Chrysin's impact on breast cancer. Utilizing databases such as GeneCards, and disgenet, Pharmmapper, ctd database, Chrysin and potential breast cancer targets were meticulously curated. Through a strategic process of mapping and screening, core targets essential for Chrysin's efficacy in breast cancer treatment were identified. Further refinement through Venn diagram analysis, considering 1350 breast cancer target genes and 433 Chrysin-related targets, identified 140 intersection targets. Subsequent construction of protein-protein interaction networks of 140 intersecting using the STRING and Cytoscape software highlighted these ten targets as core candidates. Functional annotation and pathway analysis, performed using the ShinyGO database, unveiled that the key targets were significantly associated with the Prostate cancer pathways and IL17 signaling pathways. Molecular docking results underscored Chrysin's effective binding to these ten key targets, forming stable protein-ligand complexes. Molecular docking analyses were then conducted to evaluate the impact of Chrysin in the key targets, revealing TP53, JUN, HIF1A, ALB, CASP3, STAT3, BCL2, TNF, AKT1, and IL6 as pivotal players. In summary, this investigation provides valuable revelations into the essential targets and molecular processes through which Chrysin exerts its anti-breast cancer effects. These findings not only enhance our understanding of Chrysin's pharmacological actions in breast cancer but also lay a theoretical groundwork for future investigations into the therapeutic mechanisms of Chrysin in this context.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Discover. Oncology
Discover. Oncology Medicine-Endocrinology, Diabetes and Metabolism
CiteScore
2.40
自引率
9.10%
发文量
122
审稿时长
5 weeks
期刊最新文献
A preliminary follow-up study on irreversible electroporation therapy in older patients with prostate cancer. CAT and CXCL8 are crucial cofactors for the progression of nonalcoholic steatohepatitis to hepatocellular carcinoma, the immune infiltration and prognosis of hepatocellular carcinoma. Comprehensive analysis of TMEM9 in human tumors. Deciphering the metabolic landscape of colorectal cancer through the lens of AhR-mediated intestinal inflammation. Multi-gene panel sequencing reveals the relationship between driver gene mutation and clinical characteristics in lung adenocarcinoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1