Yuming Cao, Shengnan Wang, Zihan Qin, Qiaohua Xiong, Jie Liu, Wenwen Li, Liyang Li, Fei Ao, Zexiao Wei, Li Wang
{"title":"Male germ cells with Bag5 deficiency show reduced spermiogenesis and exchange of basic nuclear proteins.","authors":"Yuming Cao, Shengnan Wang, Zihan Qin, Qiaohua Xiong, Jie Liu, Wenwen Li, Liyang Li, Fei Ao, Zexiao Wei, Li Wang","doi":"10.1007/s00018-025-05591-2","DOIUrl":null,"url":null,"abstract":"<p><p>Bcl-2 associated athanogene-5 (BAG5) represents a unique BAG cochaperone family member, regulating chaperone activity. We first demonstrated significant differences in Bag5 expression by RNA seq analysis of teratozoospermia and healthy male sperm samples, but the genetic and molecular mechanisms governing this process remain elusive. We further found that BAG5 has highest expression in human and mouse testes. BAG5 expression is elevated in late stage pachytene spermatocytes and spermatids. Targeted Bag5 inactivation in mice induces massive apoptosis in male germ cells and abrogates male infertility. The ordered loading of sperm basic nuclear proteins on chromatin is altered, with lost TNPs and PRMs, resulting in severe sperm head deformity and partial 9 + 2 microtubule structure disorder. In terms of mechanism, immunoprecipitation (IP)-mass spectroscopy (MS) revealed BAG5 interacts with HSPA2, a testis-specific HSP70 family member regulating the transcription of the transition protein TNPs as well as spermatogenesis. RNA-sequencing assessment of Bag5 deficient testis confirmed Bag5 participation in transcriptional repression and revealed significant changes in Hspa2 expression. Bag5 deficiency resulted in decreased levels of HSPA2, germ cell apoptosis and subsequent inappropriate nuclear protein deposition and chromatin condensation. Decreased BAG5 expression levels in patients with non-obstructive azoospermia and oligoasthenospermia were also detected. These results uncovered an intriguing HSPA2-mediated key function of BAG5, which may constitute a potential prognostic biomarker of male infertility.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"82 1","pages":"92"},"PeriodicalIF":6.2000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850669/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00018-025-05591-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bcl-2 associated athanogene-5 (BAG5) represents a unique BAG cochaperone family member, regulating chaperone activity. We first demonstrated significant differences in Bag5 expression by RNA seq analysis of teratozoospermia and healthy male sperm samples, but the genetic and molecular mechanisms governing this process remain elusive. We further found that BAG5 has highest expression in human and mouse testes. BAG5 expression is elevated in late stage pachytene spermatocytes and spermatids. Targeted Bag5 inactivation in mice induces massive apoptosis in male germ cells and abrogates male infertility. The ordered loading of sperm basic nuclear proteins on chromatin is altered, with lost TNPs and PRMs, resulting in severe sperm head deformity and partial 9 + 2 microtubule structure disorder. In terms of mechanism, immunoprecipitation (IP)-mass spectroscopy (MS) revealed BAG5 interacts with HSPA2, a testis-specific HSP70 family member regulating the transcription of the transition protein TNPs as well as spermatogenesis. RNA-sequencing assessment of Bag5 deficient testis confirmed Bag5 participation in transcriptional repression and revealed significant changes in Hspa2 expression. Bag5 deficiency resulted in decreased levels of HSPA2, germ cell apoptosis and subsequent inappropriate nuclear protein deposition and chromatin condensation. Decreased BAG5 expression levels in patients with non-obstructive azoospermia and oligoasthenospermia were also detected. These results uncovered an intriguing HSPA2-mediated key function of BAG5, which may constitute a potential prognostic biomarker of male infertility.
期刊介绍:
Journal Name: Cellular and Molecular Life Sciences (CMLS)
Location: Basel, Switzerland
Focus:
Multidisciplinary journal
Publishes research articles, reviews, multi-author reviews, and visions & reflections articles
Coverage:
Latest aspects of biological and biomedical research
Areas include:
Biochemistry and molecular biology
Cell biology
Molecular and cellular aspects of biomedicine
Neuroscience
Pharmacology
Immunology
Additional Features:
Welcomes comments on any article published in CMLS
Accepts suggestions for topics to be covered