Ran Cui, Gaoming Wang, Fuguo Liu, Yongkun Wang, Zinan Zhao, Muladili Mutailipu, Huiling Mu, Xiaohua Jiang, Wenjun Le, Ludi Yang, Bo Chen
{"title":"Neurturin-Induced Activation of GFRA2-RET Axis Potentiates Pancreatic Cancer Glycolysis via Phosphorylated Hexokinase 2.","authors":"Ran Cui, Gaoming Wang, Fuguo Liu, Yongkun Wang, Zinan Zhao, Muladili Mutailipu, Huiling Mu, Xiaohua Jiang, Wenjun Le, Ludi Yang, Bo Chen","doi":"10.1016/j.canlet.2025.217583","DOIUrl":null,"url":null,"abstract":"<p><p>Pancreatic cancer, characterized by its insidious onset, high invasiveness, resistance to chemotherapy, and a grim prognosis, with a five-year survival rate hovering below 10%. The identification of novel therapeutic targets addressing tumor progression is therefore critically important. While perineural invasion (PNI) is recognized as a pathological hallmark and key driver of pancreatic cancer progression, its role in metabolic reprogramming of malignant cells has not been fully elucidated. Using integrated metabolomics approaches, we found perineural invasion in pancreatic cancer significantly enhancing glycolytic flux of pancreatic cancer. Our data delineate a neuroendocrine-paracrine signaling axis in which neurturin secreted by neuronal cells binds to the GFRA2 receptor on pancreatic cancer cells, inducing RET kinase recruitment and subsequent heterodimer assembly. This receptor tyrosine kinase complex phosphorylates hexokinase 2 (HK2) at the evolutionarily conserved Ser122 residue, augmenting its hexokinase activity, ultimately driving aerobic glycolysis flux and fueling pancreatic cancer growth. In vivo experiments corroborate our findings, revealing that neurturin blockade effectively halts pancreatic cancer progression and synergizes with RET inhibitors. Our research underscores neurturin as a promising therapeutic target for the treatment of pancreatic cancer.</p>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":" ","pages":"217583"},"PeriodicalIF":9.1000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer letters","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.canlet.2025.217583","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pancreatic cancer, characterized by its insidious onset, high invasiveness, resistance to chemotherapy, and a grim prognosis, with a five-year survival rate hovering below 10%. The identification of novel therapeutic targets addressing tumor progression is therefore critically important. While perineural invasion (PNI) is recognized as a pathological hallmark and key driver of pancreatic cancer progression, its role in metabolic reprogramming of malignant cells has not been fully elucidated. Using integrated metabolomics approaches, we found perineural invasion in pancreatic cancer significantly enhancing glycolytic flux of pancreatic cancer. Our data delineate a neuroendocrine-paracrine signaling axis in which neurturin secreted by neuronal cells binds to the GFRA2 receptor on pancreatic cancer cells, inducing RET kinase recruitment and subsequent heterodimer assembly. This receptor tyrosine kinase complex phosphorylates hexokinase 2 (HK2) at the evolutionarily conserved Ser122 residue, augmenting its hexokinase activity, ultimately driving aerobic glycolysis flux and fueling pancreatic cancer growth. In vivo experiments corroborate our findings, revealing that neurturin blockade effectively halts pancreatic cancer progression and synergizes with RET inhibitors. Our research underscores neurturin as a promising therapeutic target for the treatment of pancreatic cancer.
期刊介绍:
Cancer Letters is a reputable international journal that serves as a platform for significant and original contributions in cancer research. The journal welcomes both full-length articles and Mini Reviews in the wide-ranging field of basic and translational oncology. Furthermore, it frequently presents Special Issues that shed light on current and topical areas in cancer research.
Cancer Letters is highly interested in various fundamental aspects that can cater to a diverse readership. These areas include the molecular genetics and cell biology of cancer, radiation biology, molecular pathology, hormones and cancer, viral oncology, metastasis, and chemoprevention. The journal actively focuses on experimental therapeutics, particularly the advancement of targeted therapies for personalized cancer medicine, such as metronomic chemotherapy.
By publishing groundbreaking research and promoting advancements in cancer treatments, Cancer Letters aims to actively contribute to the fight against cancer and the improvement of patient outcomes.