Function of AMPK/mTOR Signaling in TGF-β1-Induced Pterygium Fibroblast Proliferation and Transdifferentiation.

IF 1.7 4区 医学 Q3 OPHTHALMOLOGY Current Eye Research Pub Date : 2025-02-23 DOI:10.1080/02713683.2025.2470410
Yun Hua, Xinrong Zhao, Na Tang, Huijuan Wan, Haidong Lian, Ting Yuan, Chao Si
{"title":"Function of AMPK/mTOR Signaling in TGF-β1-Induced Pterygium Fibroblast Proliferation and Transdifferentiation.","authors":"Yun Hua, Xinrong Zhao, Na Tang, Huijuan Wan, Haidong Lian, Ting Yuan, Chao Si","doi":"10.1080/02713683.2025.2470410","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study aimed to investigate the regulatory role of the AMP-activated protein kinase (AMPK)/mechanistic target of rapamycin (mTOR) signaling pathway in mediating transforming growth factor-beta 1 (TGF-β1)-induced cellular proliferation and transdifferentiation processes in human pterygium fibroblasts (HPFs).</p><p><strong>Methods: </strong>HPFs were stimulated with TGF-β1 <i>in vitro</i>. Cell viability was assessed using the CCK-8 assay at 12/24/48-h post-stimulation, while migratory capacity was evaluated through standardized wound healing assays. Quantitative real-time PCR (qPCR) and western blotting analyses were employed to evaluate the expression of proliferation marker proliferating cell nuclear antigen (PCNA) and myofibroblast transdifferentiation biomarker α-smooth muscle actin (α-SMA). Western blotting further characterized the activation status of AMPK/mTOR signaling by quantifying phosphorylated AMPK (p-AMPK) and phosphorylated mTOR (p-mTOR), with total AMPK and mTOR levels serving as loading controls. To establish mechanistic causality, TGF-β1-primed HPFs were modulated using the AMPK inhibitor Compound C and activator AICAR for 24 h. Functional consequences were analyzed through CCK-8 viability assays and wound healing assays, while molecular correlates were assessed <i>via</i> qPCR and western blotting for PCNA, α-SMA, and pathway components. This comprehensive approach delineated the AMPK/mTOR axis as a critical regulator of TGF-β1-driven fibrotic phenotype acquisition in HPFs.</p><p><strong>Results: </strong>Following TGF-β1 pretreatment-induced activation of human HPFs, both cell viability and migratory capacity were markedly enhanced, with concomitant upregulation of PCNA and α-SMA. Compound C-mediated AMPK inhibition potentiated the TGF-β1-induced enhancements in HPFs viability and migration rate, concomitant with reduced p-AMPK/AMPK ratio and elevated expression of PCNA, α-SMA, and p-mTOR/mTOR ratio. Conversely, AICAR-driven AMPK activation attenuated TGF-β1-stimulated effects, demonstrating diminished viability, suppressed migratory capacity, increased p-AMPK/AMPK ratio, and decreased expression of PCNA, α-SMA, and p-mTOR/mTOR ratio.</p><p><strong>Conclusions: </strong>This study demonstrates the critical regulatory role of the AMPK/mTOR signaling pathway in controlling TGF-β1-induced proliferation and transdifferentiation in HPFs, thereby providing a potential mechanistic framework for developing novel therapeutic interventions targeting fibrotic ocular surface disorders.</p>","PeriodicalId":10782,"journal":{"name":"Current Eye Research","volume":" ","pages":"1-10"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Eye Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02713683.2025.2470410","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: This study aimed to investigate the regulatory role of the AMP-activated protein kinase (AMPK)/mechanistic target of rapamycin (mTOR) signaling pathway in mediating transforming growth factor-beta 1 (TGF-β1)-induced cellular proliferation and transdifferentiation processes in human pterygium fibroblasts (HPFs).

Methods: HPFs were stimulated with TGF-β1 in vitro. Cell viability was assessed using the CCK-8 assay at 12/24/48-h post-stimulation, while migratory capacity was evaluated through standardized wound healing assays. Quantitative real-time PCR (qPCR) and western blotting analyses were employed to evaluate the expression of proliferation marker proliferating cell nuclear antigen (PCNA) and myofibroblast transdifferentiation biomarker α-smooth muscle actin (α-SMA). Western blotting further characterized the activation status of AMPK/mTOR signaling by quantifying phosphorylated AMPK (p-AMPK) and phosphorylated mTOR (p-mTOR), with total AMPK and mTOR levels serving as loading controls. To establish mechanistic causality, TGF-β1-primed HPFs were modulated using the AMPK inhibitor Compound C and activator AICAR for 24 h. Functional consequences were analyzed through CCK-8 viability assays and wound healing assays, while molecular correlates were assessed via qPCR and western blotting for PCNA, α-SMA, and pathway components. This comprehensive approach delineated the AMPK/mTOR axis as a critical regulator of TGF-β1-driven fibrotic phenotype acquisition in HPFs.

Results: Following TGF-β1 pretreatment-induced activation of human HPFs, both cell viability and migratory capacity were markedly enhanced, with concomitant upregulation of PCNA and α-SMA. Compound C-mediated AMPK inhibition potentiated the TGF-β1-induced enhancements in HPFs viability and migration rate, concomitant with reduced p-AMPK/AMPK ratio and elevated expression of PCNA, α-SMA, and p-mTOR/mTOR ratio. Conversely, AICAR-driven AMPK activation attenuated TGF-β1-stimulated effects, demonstrating diminished viability, suppressed migratory capacity, increased p-AMPK/AMPK ratio, and decreased expression of PCNA, α-SMA, and p-mTOR/mTOR ratio.

Conclusions: This study demonstrates the critical regulatory role of the AMPK/mTOR signaling pathway in controlling TGF-β1-induced proliferation and transdifferentiation in HPFs, thereby providing a potential mechanistic framework for developing novel therapeutic interventions targeting fibrotic ocular surface disorders.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Respiratory Health Inequities among Children and Young Adults with Cerebral Palsy in Aotearoa New Zealand: A Data Linkage Study.
IF 3.9 3区 医学Journal of Clinical MedicinePub Date : 2022-11-25 DOI: 10.3390/jcm11236968
Alexandra Sorhage, Samantha Keenan, Jimmy Chong, Cass Byrnes, Amanda Marie Blackmore, Anna Mackey, Timothy Hill, Dug Yeo Han, Ngaire Susan Stott
Profile of ethnicity, living arrangements and loneliness amongst older adults in Aotearoa New Zealand: A national cross-sectional study
IF 1.6 4区 医学Australasian Journal on AgeingPub Date : 2017-12-12 DOI: 10.1111/ajag.12496
Hamish A Jamieson, Helen M Gibson, Rebecca Abey-Nesbit, Annabel Ahuriri-Driscoll, Sally Keeling, Philip J Schluter
Spirituality and coping in young adults with diabetes: a cross-sectional study
IF 0 European Diabetes NursingPub Date : 2009-12-14 DOI: 10.1002/edn.144
N Parsian RN, MSN, PhD, T Dunning AM, RN, MED, PhD, FRCNA
来源期刊
Current Eye Research
Current Eye Research 医学-眼科学
CiteScore
4.60
自引率
0.00%
发文量
163
审稿时长
12 months
期刊介绍: The principal aim of Current Eye Research is to provide rapid publication of full papers, short communications and mini-reviews, all high quality. Current Eye Research publishes articles encompassing all the areas of eye research. Subject areas include the following: clinical research, anatomy, physiology, biophysics, biochemistry, pharmacology, developmental biology, microbiology and immunology.
期刊最新文献
Complications of Silicone Oil as Vitreous Tamponade in Pars Plana Vitrectomy: A Mini Review. Targeting CCL5 Attenuates Fibrosis via Activation of PI3k/Akt Signaling Axis After Glaucoma Filtration Surgery. OCTA and Microperimetry Changes Preceding the Appearance of Diabetic Retinopathy in Patients with Type 1 Diabetes. The Effect of Lens Properties on Visual Acuity, Aniridia Associated Keratopathy and Secondary Glaucoma in Congenital Aniridia Subjects. SMP30 Alleviates Oxidative Stress and Regulates Ca2+-ATPase Activity in UVR-B-Induced Cataracts in Rats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1