{"title":"A multidimensional adaptive transformer network for fatigue detection.","authors":"Dingming Wu, Liu Deng, Quanping Lu, Shihong Liu","doi":"10.1007/s11571-025-10224-2","DOIUrl":null,"url":null,"abstract":"<p><p>Variations in information processing patterns induced by operational directives under varying fatigue conditions within the cerebral cortex can be identified and analyzed through electroencephalogram (EEG) signals. The inherent complexity of EEG signals poses significant challenges in the effective detection of driver fatigue across diverse task scenarios. Recent advancements in deep learning, particularly the Transformer architecture, have shown substantial benefits in the retrieval and integration of multi-dimensional information. Nevertheless, the majority of current research primarily focuses on the application of Transformers for temporal information extraction, often overlooking other dimensions of EEG data. In response to this gap, the present study introduces a Multidimensional Adaptive Transformer Recognition Network specifically tailored for the identification of driving fatigue states. This network features a multidimensional Transformer architecture for feature extraction that adaptively assigns weights to various information dimensions, thereby facilitating feature compression and the effective extraction of structural information. This methodology ultimately enhances the model's accuracy and generalization capabilities. The experimental results indicate that the proposed methodology outperforms existing research methods when utilized with the SEED-VIG and SFDE datasets. Additionally, the analysis of multidimensional and frequency band features highlights the ability of the proposed network framework to elucidate differences in various multidimensional features during the identification of fatigue states.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"43"},"PeriodicalIF":3.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11842677/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-025-10224-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Variations in information processing patterns induced by operational directives under varying fatigue conditions within the cerebral cortex can be identified and analyzed through electroencephalogram (EEG) signals. The inherent complexity of EEG signals poses significant challenges in the effective detection of driver fatigue across diverse task scenarios. Recent advancements in deep learning, particularly the Transformer architecture, have shown substantial benefits in the retrieval and integration of multi-dimensional information. Nevertheless, the majority of current research primarily focuses on the application of Transformers for temporal information extraction, often overlooking other dimensions of EEG data. In response to this gap, the present study introduces a Multidimensional Adaptive Transformer Recognition Network specifically tailored for the identification of driving fatigue states. This network features a multidimensional Transformer architecture for feature extraction that adaptively assigns weights to various information dimensions, thereby facilitating feature compression and the effective extraction of structural information. This methodology ultimately enhances the model's accuracy and generalization capabilities. The experimental results indicate that the proposed methodology outperforms existing research methods when utilized with the SEED-VIG and SFDE datasets. Additionally, the analysis of multidimensional and frequency band features highlights the ability of the proposed network framework to elucidate differences in various multidimensional features during the identification of fatigue states.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.