Valeria Tomarchio, Anna Crescenzi, Mariantonietta Tafuri, Martina Verri, Monica Di Cecca, Luigi Rigacci, Ombretta Annibali
{"title":"The past, the present and the future of immune checkpoints inhibitors in multiple myeloma.","authors":"Valeria Tomarchio, Anna Crescenzi, Mariantonietta Tafuri, Martina Verri, Monica Di Cecca, Luigi Rigacci, Ombretta Annibali","doi":"10.1080/17474086.2025.2469720","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Myeloma genesis is a very complex mechanism in which the interaction between plasma cells and microenvironments with immune cells, cytokines and chemokines have a central role. In the last years, the improved knowledge of immune checkpoint models led to the development of new drugs (anti-PD1/PD-L1 axis or anti-TIGIT) that now have a crucial role in the treatment of many hematological malignancies.</p><p><strong>Areas covered: </strong>In this review, the current significant literature was discussed. In the past, initial trials combining immune checkpoint inhibitors (ICIs) with immunomodulatory drugs or proteasome inhibitors demonstrated suboptimal results in terms of efficacy and safety. On the other hand, recent trials based on the combination of ICIs with immunotherapies, such as CAR-T cells or bispecific antibodies, are a particularly promising area of investigation.</p><p><strong>Expert opinion: </strong>Our idea after the evaluation of scientific literature is that despite the past, ICIs may represent a promising therapeutic approach for myeloma, particularly when combined with CAR-T cells or bispecific antibodies. By targeting immune evasion mechanisms, ICIs may enhance the efficacy of these treatments and provide new hope for patients with resistant disease. Future research will be crucial to further elucidate their optimal use in myeloma and to develop personalized treatment strategies.</p>","PeriodicalId":12325,"journal":{"name":"Expert Review of Hematology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Review of Hematology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17474086.2025.2469720","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Myeloma genesis is a very complex mechanism in which the interaction between plasma cells and microenvironments with immune cells, cytokines and chemokines have a central role. In the last years, the improved knowledge of immune checkpoint models led to the development of new drugs (anti-PD1/PD-L1 axis or anti-TIGIT) that now have a crucial role in the treatment of many hematological malignancies.
Areas covered: In this review, the current significant literature was discussed. In the past, initial trials combining immune checkpoint inhibitors (ICIs) with immunomodulatory drugs or proteasome inhibitors demonstrated suboptimal results in terms of efficacy and safety. On the other hand, recent trials based on the combination of ICIs with immunotherapies, such as CAR-T cells or bispecific antibodies, are a particularly promising area of investigation.
Expert opinion: Our idea after the evaluation of scientific literature is that despite the past, ICIs may represent a promising therapeutic approach for myeloma, particularly when combined with CAR-T cells or bispecific antibodies. By targeting immune evasion mechanisms, ICIs may enhance the efficacy of these treatments and provide new hope for patients with resistant disease. Future research will be crucial to further elucidate their optimal use in myeloma and to develop personalized treatment strategies.
期刊介绍:
Advanced molecular research techniques have transformed hematology in recent years. With improved understanding of hematologic diseases, we now have the opportunity to research and evaluate new biological therapies, new drugs and drug combinations, new treatment schedules and novel approaches including stem cell transplantation. We can also expect proteomics, molecular genetics and biomarker research to facilitate new diagnostic approaches and the identification of appropriate therapies. Further advances in our knowledge regarding the formation and function of blood cells and blood-forming tissues should ensue, and it will be a major challenge for hematologists to adopt these new paradigms and develop integrated strategies to define the best possible patient care. Expert Review of Hematology (1747-4086) puts these advances in context and explores how they will translate directly into clinical practice.