Fengshi gutong capsules attenuates CIA-induced RA bone destruction in rats by targeting TNF-α inhibition: Integration and experimental validation of network pharmacology and proteomics

IF 4.8 2区 医学 Q1 CHEMISTRY, MEDICINAL Journal of ethnopharmacology Pub Date : 2025-02-21 DOI:10.1016/j.jep.2025.119535
Jiahui Liu , Biao Qu , Sheng Wang , Linkai Qian , Feifei Liu , Xueting Zhang , Quan Zhao , Yunna Chen , Weidong Chen , Lei Wang , Sheng Zhang
{"title":"Fengshi gutong capsules attenuates CIA-induced RA bone destruction in rats by targeting TNF-α inhibition: Integration and experimental validation of network pharmacology and proteomics","authors":"Jiahui Liu ,&nbsp;Biao Qu ,&nbsp;Sheng Wang ,&nbsp;Linkai Qian ,&nbsp;Feifei Liu ,&nbsp;Xueting Zhang ,&nbsp;Quan Zhao ,&nbsp;Yunna Chen ,&nbsp;Weidong Chen ,&nbsp;Lei Wang ,&nbsp;Sheng Zhang","doi":"10.1016/j.jep.2025.119535","DOIUrl":null,"url":null,"abstract":"<div><h3>Ethnopharmacological relevance</h3><div>Fengshi Gutong Capsule (FSGT) is a proprietary Chinese medicine with established clinical efficacy in Rheumatoid arthritis (RA); however, its underlying mechanisms remain unclear.</div></div><div><h3>Aim</h3><div>This study aims to elucidate the mechanisms by which FSGT alleviates RA.</div></div><div><h3>Materials and methods</h3><div>A collagen-induced arthritis (CIA) rat model was employed to assess the therapeutic effects of FSGT in RA. Network pharmacology and proteomics were integrated to identify potential mechanism and molecular targets, which were further validated via Western blot analysis. Molecular docking and microscale thermophoresis (MST) were utilized to assess the binding affinities of FSGT's active components to key proteins.</div></div><div><h3>Results</h3><div>FSGT (280 and 840 mg/kg) alleviated CIA-induced RA in rats without significant side effects. Network pharmacology and label-free proteomic analysis displayed that FSGT exerted its therapeutic effects by modulating inflammation and bone destruction. FSGT significantly reduced serum levels of inflammatory cytokines and their protein expression in the ankle joints and synovial tissues. Additionally, FSGT attenuated bone destruction and significantly reversed the expression of bone destruction-related proteins. Molecular docking revealed that 18 active compounds in FSGT exhibited strong binding affinity for TNF-α, with hypaconitine, 18α-glycyrrhizic acid, and naringenin further validated by MST assays.</div></div><div><h3>Conclusion</h3><div>FSGT improved CIA-induced RA in rats by targeting TNF-α to reduce inflammation and inhibit bone destruction, offering insights into its therapeutic mechanisms in RA.</div></div>","PeriodicalId":15761,"journal":{"name":"Journal of ethnopharmacology","volume":"344 ","pages":"Article 119535"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ethnopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378874125002193","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ethnopharmacological relevance

Fengshi Gutong Capsule (FSGT) is a proprietary Chinese medicine with established clinical efficacy in Rheumatoid arthritis (RA); however, its underlying mechanisms remain unclear.

Aim

This study aims to elucidate the mechanisms by which FSGT alleviates RA.

Materials and methods

A collagen-induced arthritis (CIA) rat model was employed to assess the therapeutic effects of FSGT in RA. Network pharmacology and proteomics were integrated to identify potential mechanism and molecular targets, which were further validated via Western blot analysis. Molecular docking and microscale thermophoresis (MST) were utilized to assess the binding affinities of FSGT's active components to key proteins.

Results

FSGT (280 and 840 mg/kg) alleviated CIA-induced RA in rats without significant side effects. Network pharmacology and label-free proteomic analysis displayed that FSGT exerted its therapeutic effects by modulating inflammation and bone destruction. FSGT significantly reduced serum levels of inflammatory cytokines and their protein expression in the ankle joints and synovial tissues. Additionally, FSGT attenuated bone destruction and significantly reversed the expression of bone destruction-related proteins. Molecular docking revealed that 18 active compounds in FSGT exhibited strong binding affinity for TNF-α, with hypaconitine, 18α-glycyrrhizic acid, and naringenin further validated by MST assays.

Conclusion

FSGT improved CIA-induced RA in rats by targeting TNF-α to reduce inflammation and inhibit bone destruction, offering insights into its therapeutic mechanisms in RA.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of ethnopharmacology
Journal of ethnopharmacology 医学-全科医学与补充医学
CiteScore
10.30
自引率
5.60%
发文量
967
审稿时长
77 days
期刊介绍: The Journal of Ethnopharmacology is dedicated to the exchange of information and understandings about people''s use of plants, fungi, animals, microorganisms and minerals and their biological and pharmacological effects based on the principles established through international conventions. Early people confronted with illness and disease, discovered a wealth of useful therapeutic agents in the plant and animal kingdoms. The empirical knowledge of these medicinal substances and their toxic potential was passed on by oral tradition and sometimes recorded in herbals and other texts on materia medica. Many valuable drugs of today (e.g., atropine, ephedrine, tubocurarine, digoxin, reserpine) came into use through the study of indigenous remedies. Chemists continue to use plant-derived drugs (e.g., morphine, taxol, physostigmine, quinidine, emetine) as prototypes in their attempts to develop more effective and less toxic medicinals.
期刊最新文献
Anti-rheumatoid arthritis effects of Caragana acanthophylla Kom. on collagen-induced arthritis and the anti-inflammatory activity of polyphenols as main active components. Artichoke water extract protects against Lead-induced hepatotoxicity by activating Nrf2 signaling and inhibiting NLRP3/caspase-1/GSDMD-mediated pyroptosis. Integrative Investigation on the Mechanisms of Modified Zuojin Pill (SQQT) in Ameliorating Gastric Metaplasia. The Codonopsis pilosula water extract improves testicular inflammatory aging in D-galactose induced aging mice by modulating the CLEC7A/inflammasome pathway. Mechanism of ethyl acetate fraction of Amorphophallus konjac against breast cancer based on network pharmacology, molecular docking and experimental validation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1